Question

Derive cosh2(x)+sinh2(x)=cosh(2x)\cosh ^{2}(x)+\sinh ^{2}(x)=\cosh (2 x) from the definition.

Solution

Verified
Step 1
1 of 2

cosh2(x)+sin2(x)=cosh(2x)Use the definitions of The Hyperbolic Functionssinhu=eueu2 and coshu=eu+eu2Therefore,(ex+ex2)2+(exex2)2=e2x+e2x2Simplifye2x+2exex+e2x4+e2x2exex+e2x4=e2x+e2x2e2x+2+e2x4+e2x2+e2x4=e2x+e2x2Recall that ab+cb=a+cbe2x+2+e2x+e2x2+e2x4=e2x+e2x2e2x+e2x+e2x+e2x4=e2x+e2x22e2x+2e2x4=e2x+e2x2e2x+e2x2=e2x+e2x2Verified\begin{gathered} {\cosh ^2}\left( x \right) + {\sin ^2}\left( x \right) = \cosh \left( {2x} \right) \\ \textcolor{#4257b2}{{\text{Use the definitions of The Hyperbolic Functions}}} \\ \sinh u = \frac{{{e^u} - {e^{ - u}}}}{2}{\text{ and }}\cosh u = \frac{{{e^u} + {e^{ - u}}}}{2} \\ \textcolor{#4257b2}{{\text{Therefore}}{\text{,}}} \\ {\left( {\frac{{{e^x} + {e^{ - x}}}}{2}} \right)^2} + {\left( {\frac{{{e^x} - {e^{ - x}}}}{2}} \right)^2} = \frac{{{e^{2x}} + {e^{ - 2x}}}}{2} \\ \textcolor{#4257b2}{{\text{Simplify}}} \\ \frac{{{e^{2x}} + 2{e^x}{e^{ - x}} + {e^{ - 2x}}}}{4} + \frac{{{e^{2x}} - 2{e^x}{e^{ - x}} + {e^{ - 2x}}}}{4} = \frac{{{e^{2x}} + {e^{ - 2x}}}}{2} \\ \frac{{{e^{2x}} + 2 + {e^{ - 2x}}}}{4} + \frac{{{e^{2x}} - 2 + {e^{ - 2x}}}}{4} = \frac{{{e^{2x}} + {e^{ - 2x}}}}{2} \\ \textcolor{#4257b2}{ {\text{Recall that }}\frac{a}{b} + \frac{c}{b} = \frac{{a + c}}{b}} \\ \frac{{{e^{2x}} + 2 + {e^{ - 2x}} + {e^{2x}} - 2 + {e^{ - 2x}}}}{4} = \frac{{{e^{2x}} + {e^{ - 2x}}}}{2} \\ \frac{{{e^{2x}} + {e^{ - 2x}} + {e^{2x}} + {e^{ - 2x}}}}{4} = \frac{{{e^{2x}} + {e^{ - 2x}}}}{2} \\ \frac{{2{e^{2x}} + 2{e^{ - 2x}}}}{4} = \frac{{{e^{2x}} + {e^{ - 2x}}}}{2} \\ \frac{{{e^{2x}} + {e^{ - 2x}}}}{2} = \frac{{{e^{2x}} + {e^{ - 2x}}}}{2} \\ \textcolor{#4257b2}{{\text{Verified}}} \\ \end{gathered}

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Calculus: Early Transcendentals 7th Edition by James Stewart

Calculus: Early Transcendentals

7th EditionISBN: 9780538497909James Stewart
10,082 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (6 more)James Stewart
11,083 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (4 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions
Calculus, Volume 2 1st Edition by OpenStax

Calculus, Volume 2

1st EditionISBN: 9781938168062 (1 more)OpenStax
2,646 solutions

More related questions

1/4

1/7