Question

Derive equations

0TsinnωTtsinmωTtdt={0mnT/2m=n\int_{0}^{T} \sin n \omega_{T} t \sin m \omega_{T} t d t=\left\{\begin{array}{ll}{0} & {m \neq n} \\ {T / 2} & {m=n}\end{array}\right.

,

0TcosnωTtcosmωTtdt={0mnT/2m=n,\int_{0}^{T} \cos n \omega_{T} t \cos m \omega_{T} t d t=\left\{\begin{array}{ll}{0} & {m \neq n} \\ {T / 2} & {m=n}\end{array}\right.,

and 0TcosnωTtsinmωTtdt=0\int_{0}^{T} \cos n \omega_{T} t \sin m \omega_{T} t d t=0 and hence verify the equations for the Fourier coefficient given by equations a0=2T0TF(t)dt,a_{0}=\frac{2}{T} \int_{0}^{T} F(t) d t, an=2T0TF(t)cosnωTtdtn=1,2,,a_{n}=\frac{2}{T} \int_{0}^{T} F(t) \cos n \omega_{T} t d t \quad n=1,2, \ldots, and bn=2T0TF(t)sinnωTtdtn=1,2,.b_{n}=\frac{2}{T} \int_{0}^{T} F(t) \sin n \omega_{T} t d t \quad n=1,2, \ldots.

Solution

Verified
Answered 1 year ago
Answered 1 year ago
Step 1
1 of 7

We begin with the first given integral for the product of sines. We'll divide it into two cases, for mnm \neq n and for m=nm = n. For all of the integrals the frequency is defined as ωT=2πT\omega_T = \dfrac{2 \pi}{T}.

For mnm \neq n we have:

0Tsin(nωTt)sin(mωTt)dt=[sin((nm)ωTt)2(nm)ωTsin((n+m)ωTt)2(n+m)ωT]0T=[sin((nm)ωTT)2(nm)ωTsin((n+m)ωTT)2(n+m)ωTsin((nm)ωT0)2(nm)ωT+sin((n+m)ωT0)2(n+m)ωT]=sin((nm)ωTT)2(nm)ωTsin((n+m)ωTT)2(n+m)ωT0=sin((nm)2πTT)2(nm)ωTsin((n+m)2πTT)2(n+m)ωT=sin((nm)2π)2(nm)ωTsin((n+m)2π)2(n+m)ωT=000Tsin(nωTt)sin(mωTt)dt=0mn\begin{align*} \int_0^T \sin(n \omega_T t) \sin(m \omega_T t) dt &= \left[ \dfrac{\sin((n - m)\omega_T t)}{2 (n - m) \omega_T} - \dfrac{\sin((n + m)\omega_T t)}{2 (n + m) \omega_T} \right]_0^T \\ &= \left[ \begin{array} {ll} \dfrac{\sin((n - m)\omega_T T)}{2 (n - m) \omega_T} - \dfrac{\sin((n + m)\omega_T T)}{2 (n + m) \omega_T} \\ - \dfrac{\sin((n - m)\omega_T \cdot 0)}{2 (n - m) \omega_T} + \dfrac{\sin((n + m)\omega_T \cdot 0)}{2 (n + m) \omega_T} \end{array} \right] \\ &= \dfrac{\sin((n - m)\omega_T T)}{2 (n - m) \omega_T} - \dfrac{\sin((n + m)\omega_T T)}{2 (n + m) \omega_T} - 0 \\ &= \dfrac{\sin((n - m)\dfrac{2 \pi}{T} T)}{2 (n - m) \omega_T} - \dfrac{\sin((n + m)\dfrac{2 \pi}{T} T)}{2 (n + m) \omega_T} \\ &= \dfrac{\sin((n - m) 2 \pi)}{2 (n - m) \omega_T} - \dfrac{\sin((n + m) 2 \pi)}{2 (n + m) \omega_T} \\ &= 0 - 0 \\ \int_0^T \sin(n \omega_T t) \sin(m \omega_T t) dt &= 0 \qquad m \neq n \end{align*}

mm and nn are both integers so their sum or difference will be an integer and any sine of a product of 2π2 \pi with an integer will be 0.

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

More related questions

1/4

1/7