Question

Determine whether the following statements are true and give an explanation or counterexample.

u×v| \mathbf { u } \times \mathbf { v } | is less than both u|u| and v|v|.

Solution

Verified
Answered 9 months ago
Answered 9 months ago
Step 1
1 of 2

Not true

Suppose u\mathbf u and v\mathbf v are orthogonal   sin(u,v)=1\ \Rightarrow \ \sin \angle (\mathbf u, \mathbf v)=1

Let u=1,v=2|\mathbf u|=1, |\mathbf v|=2. Then

u×v=uvsin(u,v)=121=2|\mathbf u \times \mathbf v|=|\mathbf u| |\mathbf v|\sin \angle (\mathbf u, \mathbf v)=1\cdot 2\cdot 1=2

So,

u×v>u|\mathbf u \times \mathbf v|>|\mathbf u|

Create an account to view solutions

Create an account to view solutions

More related questions

1/4

1/7