## Related questions with answers

Question

Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. -If f(x) = sin²(2x), then f’(x) = 2(sin 2x)(cos 2x).

Solution

VerifiedStep 1

1 of 2$f(x) = sin^2(2x)$

$f'(x) = 2sin(2x)^{2-1} \cdot \dfrac{d}{dx} sin(2x)$

$= 2sin(2x) \cdot cos(2x) \cdot \dfrac{d}{dx}(2x)$

$= 4sin(2x) cos(2x)$

We can see from the chain rule, that the derivative shown for the function is missing an extra factor of 2 from the inner-most funciton (2x)

Also the derivative can be simplified by the sin double angle identity.

$4sin(2x)cos(2x) = 2sin(4x)$

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir10,142 solutions

#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (5 more)James Stewart11,084 solutions

#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson11,049 solutions

## More related questions

1/4

1/7