Try the fastest way to create flashcards
Question

Determine whether the statement is true or false. If it is true, explain why it is true. If it is false, give an example to show why it is false. limx2(xx+1+3x1)=limx2xx+1+limx23x1\lim _{x \rightarrow 2}\left(\frac{x}{x+1}+\frac{3}{x-1}\right)=\lim _{x \rightarrow 2} \frac{x}{x+1}+\lim _{x \rightarrow 2} \frac{3}{x-1}

Solution

Verified
Step 1
1 of 2

Let's solve given problem.

limx2(xx+1+3x1)\lim_{x\to2}\left(\frac{x}{x+1}+\frac{3}{x-1}\right)

Using property

If both limits exist then

limxa(f(x)+g(x))=limxaf(x)+limxag(x)\lim_{x\to a}(f(x)+g(x))=\lim_{x\to a}f(x)+\lim_{x\to a}g(x)

we have

limx2xx+1=22+1=23\lim_{x\to2}\frac{x}{x+1}=\frac{2}{2+1}=\frac{2}{3}

limx23x1=321=3\lim_{x\to2}\frac{3}{x-1}=\frac{3}{2-1}=3

so

limx2(xx+1+3x1)=limx2xx+1+limx23x1\lim_{x\to2}\left(\frac{x}{x+1}+\frac{3}{x-1}\right)=\lim_{x\to2}\frac{x}{x+1}+\lim_{x\to2}\frac{3}{x-1}

Therefore, the given statement is true\color{#19804f}{\text{true}}.

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach 10th Edition by Tan, Soo

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

10th EditionISBN: 9781285464640 (4 more)Tan, Soo
5,088 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (4 more)James Stewart
11,085 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (2 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,049 solutions

More related questions

1/4

1/7