Try the fastest way to create flashcards
Question

Differentiate the series

E(x)=n=0xnn!E(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n !}

term-by-term to show that E(x) is equal to its derivative.

Solution

Verified
Step 1
1 of 2

E(x)=n=0xnn!d dxE(x)=n=0d dx(xnn!)d dxE(x)=n=1nxn1n!d dxE(x)=n=1nxn1n(n1)!d dxE(x)=n=1xn1(n1)!d dxE(x)=n=0xnn!=E(x)\begin{align*} &E(x)=\sum\limits_{n=0}\frac{x^n}{n!}\\ \Rightarrow&\dfrac{d\ }{dx}E(x)=\sum\limits_{n=0}\dfrac{d\ }{dx}\left(\frac{x^n}{n!}\right)\tag{differentiating both sides}\\ \Rightarrow&\dfrac{d\ }{dx}E(x)=\sum\limits_{n=1}\frac{nx^{n-1}}{n!}\\ \Rightarrow&\dfrac{d\ }{dx}E(x)=\sum\limits_{n=1}\frac{\cancel{n}x^{n-1}}{\cancel{n}\cdot(n-1)!}\\ \Rightarrow&\dfrac{d\ }{dx}E(x)=\sum\limits_{n=1}\frac{x^{n-1}}{(n-1)!}\\ \Rightarrow&\dfrac{d\ }{dx}E(x)=\sum\limits_{n=0}\frac{x^n}{n!}=E(x)\tag{re-indexing}\\ \end{align*}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (6 more)James Stewart
11,081 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions
Calculus, Volume 2 1st Edition by OpenStax

Calculus, Volume 2

1st EditionISBN: 9781938168062OpenStax
2,646 solutions

More related questions

1/4

1/7