Question

# Estimate the number of photons emitted per second from $1.0 \mathrm{cm}^{2}$ of a person’s skin if a typical emitted photon has a wavelength of 10,000 nm.

Solution

Verified
Step 1
1 of 3

The area of the sample skin is given as

\begin{align*} A & = 1 \ \mathrm{cm^2 } = 1 \times 10^{-4} \ \mathrm{m^2 } \end{align*}

The wavelength of emitted photon is given as

\begin{align*} \lambda_{max} & = 10,000 \ \mathrm{nm} = 1 \times 10^{-5} \ \mathrm{m } \end{align*}

Now, the temperature of the human body, using Wien's law, is estimated as

\begin{align*} \lambda_{max} & = \dfrac{2.90 \times 10^{-3} \ \mathrm{m\cdot K}}{T} \\ \implies T & = \dfrac{2.90 \times 10^{-3} \ \mathrm{m\cdot K}}{\lambda_{max} } %\\ %& = \dfrac{2.90 \times 10^{-3} \ \mathrm{m\cdot K}}{(1.0 \times 10^{-5} \ \mathrm{m})} \\ %& \approx 290 \ \mathrm{K} \end{align*}

Stefan-Boltzmann's constant is given as

\begin{align*} \sigma & = 5.67 \times 10^{-8} \ \mathrm{W/m^2\cdot K^4} \end{align*}

If $n$ number of photons are emitted per second, then the power is given as

\begin{align*} P & = n \cdot \dfrac{h c}{\lambda_{max}} \end{align*}

Using Stefan-Boltzmann's law, we have the emitted power as

\begin{align*} P & = \sigma \, A\, T^4 \end{align*}

## Recommended textbook solutions #### Physics for Scientists and Engineers: A Strategic Approach with Modern Physics

4th EditionISBN: 9780133942651Randall D. Knight
3,508 solutions #### College Physics: Explore and Apply

2nd EditionISBN: 9780134601823Alan Heuvelen, Eugenia Etkina, Gorazd Planinsic
3,177 solutions #### Mathematical Methods in the Physical Sciences

3rd EditionISBN: 9780471198260Mary L. Boas
3,355 solutions #### Fundamentals of Physics

10th EditionISBN: 9781118230718 (1 more)David Halliday, Jearl Walker, Robert Resnick
8,975 solutions