Try the fastest way to create flashcards
Question

Evaluate each determinant.

2012102405\left| \begin{array} { r r r } { 2 } & { 0 } & { \frac { 1 } { 2 } } \\ { 1 } & { 0 } & { 2 } \\ { 4 } & { 0 } & { - 5 } \end{array} \right|

Solution

Verified
Step 1
1 of 2

Consider a n×n matrix such that n3 (1) You can select any row or column to expand its determinant.  (2) Once the row/column is selected, multiply each element of that row/column by its cofactor, then add all these products.  (3) The sum-product described above is equal to the determinant of the original matrix. \text{\color{#c34632}Consider a $n\times n$ matrix such that $n\geq3$: $ $ (1) You can select any row or column to expand its determinant. $ $ (2) Once the row/column is selected, multiply each element of that row/column by its cofactor, then add all these products. $ $ (3) The sum-product described above is equal to the determinant of the original matrix. }

Let us expand this determinant along column 2 because it has the maximum zeros.

2012102405=0(1)1+21245+0(1)2+221245+0(1)3+221212\left|\begin{array}{ccc} 2 & 0 & \dfrac{1}{2}\\\\ 1 & 0 & 2 \\\\ 4 & 0 & -5\end{array}\right|=0\cdot \left(-1\right)^{1+2}\cdot\left|\begin{array}{cc} 1 & 2 \\ 4 & -5\end{array}\right|+0\cdot \left(-1\right)^{2+2}\cdot \left|\begin{array}{cc} 2 & \dfrac{1}{2} \\\\ 4 & -5\end{array}\right|+0\cdot \left(-1\right)^{3+2}\cdot \left|\begin{array}{cc} 2 & \dfrac{1}{2}\\\\ 1 & 2 \end{array}\right|

=0+0+0=0=0+0+0=0

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Precalculus 2nd Edition by Carter, Cuevas, Day, Malloy

Precalculus

2nd EditionISBN: 9780076602186Carter, Cuevas, Day, Malloy
8,886 solutions
Nelson Functions 11 1st Edition by Chris Kirkpatrick, Marian Small

Nelson Functions 11

1st EditionISBN: 9780176332037Chris Kirkpatrick, Marian Small
1,275 solutions
Precalculus: A Right Triangle Approach 3rd Edition by J. S. Ratti, Marcus S. McWaters

Precalculus: A Right Triangle Approach

3rd EditionISBN: 9780321912763 (2 more)J. S. Ratti, Marcus S. McWaters
5,672 solutions
Precalculus with Limits 3rd Edition by Larson

Precalculus with Limits

3rd EditionISBN: 9781133962885 (3 more)Larson
11,068 solutions

More related questions

1/4

1/7