Try the fastest way to create flashcards
Question

Evaluate f(3). f(x)=0xtdtf ( x ) = \int _ { 0 } ^ { \infty } x ^ { - t } d t

Solution

Verified
Answered 6 months ago
Answered 6 months ago
Step 1
1 of 2

To Solve :\textbf{To Solve :}

03tdt\int_{0}^{\infty} 3^{-t} \,dt

Solution :\textbf{Solution :}

03tdt=limb0b3tdt=limb3tln30b=limb3tln3b0=limb(30ln33bln3)=1ln33ln3=1ln30ln3=1ln3\begin{align*} \int_{0}^{\infty} 3^{-t} \,dt &= \lim\limits_{b \to \infty} \int_{0}^{b} 3^{-t} \,dt \\ &= \lim\limits_{b \to \infty} \eval{\dfrac{3^{-t}}{-\ln 3}}_{0}^{b} \\ &= \lim\limits_{b \to \infty} \eval{\dfrac{3^{-t}}{\ln 3}}_{b}^{0} \\ &= \lim\limits_{b \to \infty} \qty(\dfrac{3^{-0}}{\ln 3} - \dfrac{3^{-b}}{\ln 3}) \\ &= \dfrac{1}{\ln 3} - \dfrac{3^{-\infty}}{\ln 3} \\ &= \dfrac{1}{\ln 3} - \dfrac{0}{\ln 3} \\ &= \dfrac{1}{\ln 3} \end{align*}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Single and Multivariable 7th Edition by Andrew M. Gleason, Hughes-Hallett, William G. McCallum

Calculus: Single and Multivariable

7th EditionISBN: 9781119320494Andrew M. Gleason, Hughes-Hallett, William G. McCallum
8,896 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (6 more)James Stewart
11,084 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7