## Related questions with answers

Evaluate $f^{\prime \prime \prime}(-2)$ where $f(x)=2 \ln |x|+3$

Solution

VerifiedThe function $f(x)$ is given as

$\begin{align*} f(x) & = 2\, \ln |x| + 3 \end{align*}$

Differentiating $f(x)$ w.r.t. $x$, we get

$\begin{align*} f'(x) & = 2\, \cdot \dfrac{1}{x} + 0 \\ f'(x) & = 2\, {x}^{-1} \end{align*}$

Differentiating $f'(x)$ w.r.t. $x$, we get

$\begin{align*} f''(x) & = (-1)\,\cdot 2\, {x}^{-2} \\ f''(x) & = -2\, {x}^{-2} \\ \end{align*}$

Differentiating $f''(x)$ w.r.t. $x$, we get

$\begin{align*} f'''(x) & = -(-2)\,\cdot 2\, {x}^{-3} \\ f'''(x) & = 4\, {x}^{-3} \\ \end{align*}$

Therefore. the value of $f'''(-2)$ is given by

$\begin{align*} f'''(-2) & = 4\, {(-2)}^{-3} \\ f'''(-2) & = 4\,\cdot {(-2)}^{-3} \\ f'''(-2) & = 4\, \cdot \dfrac{1}{(-2)^3}\\ f'''(-2) & = 4\, \cdot \left(\dfrac{1}{-8}\right)\\ f'''(-2) & = -\dfrac{1}{2}\\ &\hspace*{-14mm}\boxed{f'''(-2)= -\dfrac{1}{2}} \end{align*}$

## Create an account to view solutions

## Create an account to view solutions

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (6 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (1 more)James Stewart#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927Daniel K. Clegg, James Stewart, Saleem Watson#### Calculus with Trigonometry and Analytic Geometry

2nd Edition•ISBN: 9781565771468Frank Y.H. Wang, Saxon## More related questions

1/4

1/7