Try the fastest way to create flashcards
Question

Evaluate limn010101cos2{π2n(x1+x2++xn)}dx1dx2dxn.\lim _{n \rightarrow \infty} \int_0^1 \int_0^1 \cdots \int_0^1 \cos ^2\left\{\frac{\pi}{2 n}\left(x_1+x_2+\cdots+x_n\right)\right\} d x_1 d x_2 \cdots d x_n.

Solutions

Verified
Answered 9 months ago
Step 1
1 of 5

Assume yk=1xky_k = 1- x_k \\ \\$\Rightarrow π2n\dfrac{\pi}{2n}\Sigma_{i=1}^nx_i=π2n\dfrac{\pi}{2n}(n-\Sigma_{i=1}^ny_i)=π2\dfrac{\pi}{2}-π2n\dfrac{\pi}{2n}\Sigma_{i=1}^ny_i$ . . . . . (1)

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus 10th Edition by Bruce H. Edwards, Ron Larson

Calculus

10th EditionISBN: 9781285057095 (3 more)Bruce H. Edwards, Ron Larson
12,386 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (7 more)James Stewart
11,084 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927Daniel K. Clegg, James Stewart, Saleem Watson
11,049 solutions

More related questions

1/4

1/7