## Related questions with answers

Question

Evaluate the limit with either L’Hoopital’s rule or previously learned methods.

$\lim _{x \rightarrow 3} \frac{x^{2}-9}{x+3}$

Solution

VerifiedStep 1

1 of 2Since $f ( x ) = \frac { x ^ { 2 } - 9 } { x + 3 }$ is defined for all $x \not =-3$ we can evaluate the limit directly as:

$\begin{aligned} \lim _ { x \rightarrow 3 } \frac { x ^ { 2 } - 9 } { x + 3 } = \frac { ( 3 ) ^ { 2 } - 9 } { 3 + 3 } = \frac { 0 } { 6 } = 0 \end{aligned}$

Finally, we have found that:

$\begin{aligned} \lim _ { x \rightarrow 3 } \frac { x ^ { 2 } - 9 } { x + 3 } = 0 \end{aligned}$

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir10,142 solutions

#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (5 more)James Stewart11,084 solutions

#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (2 more)Daniel K. Clegg, James Stewart, Saleem Watson11,048 solutions

## More related questions

1/4

1/7