Try the fastest way to create flashcards
Question

Evaluate the limits or explain why the limit fails to exist.

lim(x,y)(0,0)(x+y)2x2+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { ( x + y ) ^ { 2 } } { x ^ { 2 } + y ^ { 2 } }

Solution

Verified
Step 1
1 of 2

To prove that the limit does not exist we can rearrange the given terms using the properties of limit.

lim(x,y)(0,0)(x+y)2x2+y2=lim(x,y)(0,0)x2+y2x2+y2+lim(x,y)(0,0)2xyx2+y2\lim_{\left(x,y\right)\to\left(0,0\right)}\dfrac{\left(x+y\right)^2}{x^2+y^2}=\lim_{\left(x,y\right)\to\left(0,0\right)}\dfrac{x^2+y^2}{x^2+y^2}+\lim_{\left(x,y\right)\to\left(0,0\right)}\dfrac{2xy}{x^2+y^2}

The first term is obviously equal to 11. For the second term take the paths x=tx=t and y=2ty=2t and let t=0t=0.

We now have:

limt04t25t2=45\lim_{t\to 0}\dfrac{4t^2}{5t^2}=\dfrac{4}{5}

However if we set x=tx=t and take y=3ty=3t we get a different result:

limt06t210t2=35\lim_{t\to 0}\dfrac{6t^2}{10t^2}=\dfrac{3}{5}

Therefore limit does not exist.

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Vector Calculus 4th Edition by Susan J. Colley

Vector Calculus

4th EditionISBN: 9780321780652 (3 more)Susan J. Colley
1,866 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (6 more)James Stewart
11,085 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7