Try the fastest way to create flashcards
Question

Evaluate the surface integral ∫∫_S F*ndA by the divergence theorem. Show the details. F=[e^x, e^y, e^z], S the surface of the cube |x|≤1, |y|≤1, |z|≤1

Solution

Verified
Step 1
1 of 2

The divergence of F\pmb{F} is

divF=ex+ey+ez\text{div}\pmb{F} = e^x + e^y + e^z

and the region bounded TT bounded by the surface SS is

T:{x1y1z1T: \begin{cases} |x| \leq 1 \\ |y| \leq 1 \\ |z| \leq 1 \end{cases}

which can be written as

T:{1x11y11z1T: \begin{cases} -1 \leq x \leq 1 \\ -1 \leq y \leq 1 \\ -1 \leq z \leq 1 \end{cases}

Using the divergence Theorem we get:

SFndA=111111(ex+ey+ez)dxdydz==1111(ex+xey+xez)11dydz=1111(ee1+2ey+2ez)dydz==11(y(ee1)+2ey+2yez)11dz=11(2(ee1)+2(ee1)+4ez)dz==411(ee1+ez)dz=4(z(ee1)+ez)11==5(2(ee1)+ee1)=12(ee1)=24ee12=24sinh(1)\begin{aligned} & \iint\limits_S \pmb{F \cdot n} dA = \int\limits_{-1}^1 \int\limits_{-1}^1 \int\limits_{-1}^1 (e^x+e^y+e^z) dxdydz = \\ & = \int\limits_{-1}^1 \int\limits_{-1}^1 \left( e^x + xe^y +xe^z \right) \big\vert_{-1}^1 dy dz = \int\limits_{-1}^1 \int\limits_{-1}^1 \left( e - e^{-1} + 2 e^y + 2e^z \right) dy dz = \\ & = \int\limits_{-1}^1 \left( y (e - e^{-1}) +2 e^y + 2y e^z \right) \big\vert_{-1}^1 dz = \int\limits_{-1}^1 \left( 2 (e - e^{-1}) +2 (e - e^{-1}) +4 e^z \right) dz = \\ & = 4 \int\limits_{-1}^1 \left( e - e^{-1} + e^z \right) dz = 4 \left( z(e- e^{-1} ) + e^z \right) \Big\vert_{-1}^1 = \\ & = 5 ( 2 (e-e^{-1}) +e - e^{-1} ) =12 (e- e^{-1}) = 24 \frac{ e- e^{-1}}{2} = \textcolor{#4257b2}{ 24 \sinh(1)} \end{aligned}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Advanced Engineering Mathematics 10th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

10th EditionISBN: 9780470458365 (1 more)Erwin Kreyszig
4,134 solutions
Advanced Engineering Mathematics 9th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

9th EditionISBN: 9780471488859 (1 more)Erwin Kreyszig
4,201 solutions
Advanced Engineering Mathematics 6th Edition by Dennis G. Zill

Advanced Engineering Mathematics

6th EditionISBN: 9781284105902 (8 more)Dennis G. Zill
5,294 solutions
Advanced Engineering Mathematics 7th Edition by Dennis G. Zill

Advanced Engineering Mathematics

7th EditionISBN: 9781284206241Dennis G. Zill
5,289 solutions

More related questions

1/4

1/7