## Related questions with answers

Question

Evaluate using Integration by Parts as a first step.

$\int \frac { \sin ^ { - 1 } x } { x ^ { 2 } } d x$

Solution

VerifiedStep 1

1 of 6We need to evaluate the integral :

$\int \dfrac{\sin^{-1} x}{x^2}\ dx$

We use method of integration by parts for solving this integral

$\begin{gather} \int u\ dv=uv-\int v\ du \end{gather}$

Here, we take $u =\sin^{-1} x$ and $dv= \dfrac{1}{x^2}\ dx$. So $v=\dfrac{x^{-2+1}}{-2+1} = -\dfrac 1x$ and

$\dfrac{d}{dx}\sin^{-1} x =\dfrac{1}{\sqrt{1-x^2}} \implies du = \dfrac{1}{\sqrt{1-x^2}}\ dx$

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir10,142 solutions

#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (6 more)James Stewart11,081 solutions

#### Calculus: Early Transcendentals

4th Edition•ISBN: 9781319050740 (2 more)Colin Adams, Jon Rogawski, Robert Franzosa8,977 solutions

#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson11,050 solutions

## More related questions

- college algebra

1/4

- college algebra

1/7