## Related questions with answers

Question

Explain how a particle can be accelerating even though its speed is constant.

Solution

VerifiedStep 1

1 of 2$\hspace*{5mm}$Position vector is

$\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}$

$\hspace*{5mm}$The velocity vector is

$\begin{align*} \mathbf{v}(t) &=\mathbf{r}^{\prime}(t) \\ &=-\sin t \mathbf{i}+\cos t \mathbf{j} \end{align*}$

$\hspace*{5mm}$Speed is

$\begin{align*} \boldsymbol{v} &=\|\mathbf{v}(t)\| \\ &=\sqrt{(-\sin t)^{2}+(\cos t)^{2}} \\ &=1 \end{align*}$

$\hspace*{5mm}$From this we can see that speed is constant, and acceleration vector is $\mathbf{a}(t)=-\cos t \mathbf{i}-\sin t \mathbf{j}$ and this change all time.

## Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Calculus: Early Transcendentals

7th Edition•ISBN: 9780538497909 (4 more)James Stewart10,082 solutions

#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (2 more)James Stewart11,083 solutions

#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (2 more)Daniel K. Clegg, James Stewart, Saleem Watson11,047 solutions

## More related questions

1/4

1/7