Try Magic Notes and save time.Try it free
Try Magic Notes and save timeCrush your year with the magic of personalized studying.Try it free
Question

Explain why u=asinθu=a \sin \theta is a useful substitution when an integral contains an expression of the form a2u2\sqrt{a^2-u^2}.

Solution

Verified
Step 1
1 of 2

Assume, we need to solve the integral

a2u2du\int \sqrt {a^2-u^2}\,du

By substitution

u=asinθu=a\sin \theta

we have

du=acosθdθ\begin{align*} du&=a\cos \theta \,d\theta \end{align*}

so, the integral goes to

a2a2sin2θacosθdθ=a2cos2θdθ=a21+cos2θ2dθ=a22(θ+12sin2θ)+C=a22(θ+sinθcosθ)+C\begin{align*} \int & \sqrt {a^2-a^2\sin^2 \theta }\cdot a\cos \theta\,d\theta \\[12pt] &=a^2\int \cos^2 \theta \,d\theta \\[12pt] &=a^2\int \frac {1+\cos 2\theta } {2 }\,d\theta \\[12pt] &=\frac {a^2 } {2 }\,\left(\theta + \frac {1} {2}\,\sin 2\theta \right)+C \\[12pt] &=\frac {a^2 } {2 }\,\left(\theta + \sin \theta \cos \theta \right)+C \end{align*}

In terms of uu, since

θ=arcsin(ua)sinθ=uacosθ=1sin2θ=1u2a2\begin{align*} \theta&=\arcsin \left( \frac {u} {a} \right) \\[12pt] \sin \theta &= \frac {u} {a} \quad \Rightarrow \quad \cos \theta = \sqrt {1-\sin^2 \theta }= \sqrt {1-\frac {u^2 } {a^2 } } \end{align*}

we have

a2u2du=a22[arcsin(ua)+ua1(ua)2]+C\int \sqrt {a^2-u^2}\,du= \frac {a^2} {2}\, \left[ \arcsin \left( \frac {u} {a} \right) +\frac {u} {a} \, \sqrt { 1 - \left( \frac {u} {a} \right)^2 } \right]+C

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (3 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,144 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (4 more)James Stewart
11,084 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,049 solutions
Calculus with Trigonometry and Analytic Geometry 2nd Edition by Frank Y.H. Wang, Saxon

Calculus with Trigonometry and Analytic Geometry

2nd EditionISBN: 9781565771468Frank Y.H. Wang, Saxon
3,652 solutions

More related questions

1/4

1/7