## Related questions with answers

Question

Express the Law of Sines in terms of only the cosine function.

Solution

VerifiedStep 1

1 of 2According to law of sines:

$\dfrac{a}{\sin a}=\dfrac{b}{\sin b}=\dfrac{c}{\sin c}$

We know $\sin (90 \text{\textdegree}+\theta)=\cos \theta$.

Expressing law of sines in terms of cosines:

$\begin{align*} \dfrac{a}{\sin a}&=\dfrac{b}{\sin b}=\dfrac{c}{\sin c}\\ \dfrac{a}{\sin (90\text{\textdegree} -90\text{\textdegree} + a)}&=\dfrac{b}{\sin(90\text{\textdegree} -90\text{\textdegree} + b)}=\dfrac{c}{\sin(90\text{\textdegree} -90\text{\textdegree} + c)}\\ \textcolor{#4257b2}{\dfrac{a}{\cos (a-90\text{\textdegree} )}}&=\textcolor{#4257b2}{\dfrac{b}{\cos( b-90\text{\textdegree} )}=\dfrac{c}{\cos( c-90\text{\textdegree} )}}\\ \end{align*}$

## Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Big Ideas Math Geometry: A Common Core Curriculum

1st Edition•ISBN: 9781608408399 (1 more)Boswell, Larson4,072 solutions

## More related questions

- engineering

1/4

- engineering

1/7