Try Magic Notes and save time.Try it free
Try Magic Notes and save timeCrush your year with the magic of personalized studying.Try it free
Question

# Factor completely and write the answer with no negative exponents. Do not rationalize the denominator.$\dfrac{6(t-1)^5(2t+5)^6-6(2t+5)^5(2)(t-1)^6}{[(2t+5)^6]^2}$

Solution

Verified
Step 1
1 of 3

Cancelling the common factor between the numerator and the denominator, the given expression, $\dfrac{6(t-1)^5(2t+5)^6-6(2t+5)^5(2)(t-1)^6}{[(2t+5)^6]^2} ,$ simplifies to

\begin{align*} & \dfrac{6(t-1)^5(2t+5)^6-6(2t+5)^5(2)(t-1)^6}{(2t+5)^{6(2)}} &\left( \text{use }(a^m)^n=a^{mn} \right) \\\\&= \dfrac{6(t-1)^5(2t+5)^6-6(2t+5)^5(2)(t-1)^6}{(2t+5)^{12}} \\\\&= \dfrac{(2t+5)^5\left[ 6(t-1)^5(2t+5)-6(2)(t-1)^6 \right]}{(2t+5)^{12}} &\left( \text{factor }(2t+5)^5 \right) \\\\&= \dfrac{\cancel{(2t+5)^5}\left[ 6(t-1)^5(2t+5)-6(2)(t-1)^6 \right]}{(2t+5)^{\cancel{12}7}} &\left( \text{factor }(2t+5)^5 \right) \\\\&= \dfrac{ 6(t-1)^5(2t+5)-6(2)(t-1)^6 }{(2t+5)^{7}} \\\\&= \dfrac{ 1 }{(2t+5)^{7}}\cdot6(t-1)^5(2t+5)-6(2)(t-1)^6 .\end{align*}

## Recommended textbook solutions #### College Algebra and Trigonometry

1st EditionISBN: 9780078035623Donna Gerken, Julie Miller
9,697 solutions #### Algebra and Trigonometry

6th EditionISBN: 9780134463216 (4 more)Robert F. Blitzer
10,709 solutions #### Algebra and Trigonometry

4th EditionISBN: 9781305071742 (2 more)Lothar Redlin, Stewart, Watson
10,990 solutions #### College Algebra

1st EditionISBN: 9781938168383Jay Abramson, OpenStax
4,642 solutions