Try the fastest way to create flashcards
Question

Find a function y=f(x) that satisfies both conditions: dydx=3x1x2f(1)=5\frac{d y}{d x}=3 x^{-1}-x^{-2} \quad f(1)=5

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 3

Let's integrate derivative from the exercise to find y=f(x)y=f(x).

y=dydxdx=(3x1x2)dx=3lnxx11+C=3lnx+1x+C\begin{aligned} y&=\int\dfrac{dy}{dx}dx\\ &=\int(3x^{-1}-x^{-2})dx\\ &=3\ln|x|-\dfrac{x^{-1}}{-1}+C\\ &=3\ln|x|+\dfrac{1}{x}+C \end{aligned}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus for Business, Economics, Life Sciences, and Social Sciences 14th Edition by Karl E. Byleen, Michael R. Ziegler, Raymond A. Barnett

Calculus for Business, Economics, Life Sciences, and Social Sciences

14th EditionISBN: 9780134668574Karl E. Byleen, Michael R. Ziegler, Raymond A. Barnett
3,349 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (6 more)James Stewart
11,085 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7