100y′′+240y′+(196π2+144)y=0⇒Homogeneous 2nd Order D.E , With Constant Coeff.
⇒Form :ay′′+by′+cy=0
Where:a,b,c⇒Constants
InordertosolvethisD.E,weneedtogetthe"characteresticequation"byreplacing
y′′⇒m2,y′⇒m,y⇒1
Then Characterestic Eq :⇒100m2+240m+(196π2+144)=0
m1,2=2a−b±b2−4ac=200−240±57600−(78400π2+57600)
m1,2=200−240±280πi=200−240−280πi,200−240+280πi
m1,2=5−6±57πi⇒m1,2=α±βi
α=5−6.β=57π
∴Solution is : y=eαx(C1cos(βx)+C2sin(βx))⇒For Complix Roots
∴y=e5−6x(C1cos(57πx)+C2sin(57πx))