Try the fastest way to create flashcards
Question

Find a general solution. Check your answer by substitution. 100y''+240y'+(196π²+144)y=0

Solutions

Verified
Answered 2 years ago
Step 1
1 of 2

100y+240y+(196π2+144)y=0            Homogeneous 2nd Order D.E , With Constant Coeff.{\color{#c34632} {100y''+240y'+(196\pi^{2} +144)y=0}}\;\;\;\; \Rightarrow \;\; \textbf{Homogeneous 2nd Order D.E , With Constant Coeff.}

Form :      ay+by+cy=0  \Rightarrow \textbf{Form :}\;\; \boxed{\;ay''+by'+cy=0\;}

Where  :  a  ,  b  ,  c    ConstantsWhere\; : \;a\;,\;b\;,\;c \;\; \Rightarrow Constants

In  order  to  solve  this  D.E  ,  we  need  to  get  the  "characterestic  equation  "by  replacingIn\; order\; to\; solve\; this\; D.E \;, \;we\; need \;to\; get\; the\; "characterestic\; equation\;" by\; replacing

y        m2      ,      y        m      ,      y        1\boxed{y'' \;\; \Rightarrow \;\; m^{2}\;\;\;,\;\;\; y'\;\; \Rightarrow \;\; m\;\;\;,\;\;\;y\;\; \Rightarrow \;\; 1}

Then Characterestic Eq :        100m2+240m+(196π2+144)=0\textbf{Then Characterestic Eq :}\;\; \Rightarrow \;\;{\color{#c34632} {100m^{2}+240m+(196\pi^{2} +144)=0}}

m1,2=b  ±b24ac2a=240  ±57600(78400π2+57600)200m_{1,2}=\dfrac{-b \;\pm \sqrt{b^{2}-4ac}}{2a}=\dfrac{-240\;\pm \sqrt{57600-(78400\pi^{2} +57600)}}{200}

m1,2=240  ±280πi200=240280πi200    ,    240+280πi200m_{1,2}=\dfrac{-240\;\pm 280\pi i}{200}=\dfrac{-240-280\pi i}{200}\;\;,\;\; \dfrac{-240+280\pi i}{200}

m1,2=65±75πi              m1,2=α±βi  m_{1,2}=\dfrac{-6}{5}\pm \dfrac{7}{5}\pi i\;\;\;\; \Rightarrow \;\; \boxed{\;m_{1,2}=\alpha \pm \beta i\;}

  α=65        .        β=75π  \boxed{\;\alpha =\dfrac{-6}{5}\;}\;\;\;.\;\;\; \boxed{\;\beta =\dfrac{7}{5}\pi \;}

    Solution is :   y=eαx(C1cos(βx)+C2sin(βx))          For Complix Roots\therefore \;\; \textbf{Solution is : }\; \boxed{\color{#c34632} {y=e^{\alpha x}(C_{1}\cos(\beta x)+C_{2}\sin(\beta x))}}\;\;\; \Rightarrow \;\; \textbf{For Complix Roots}

  y=e65x(C1cos(75πx)+C2sin(75πx))  \therefore \boxed{\;\color{#4257b2} {y=e^{\dfrac{-6}{5} x}(C_{1}\cos(\dfrac{7}{5}\pi x)+C_{2}\sin(\dfrac{7}{5}\pi x))}\;}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Advanced Engineering Mathematics 10th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

10th EditionISBN: 9780470458365 (5 more)Erwin Kreyszig
4,134 solutions
Advanced Engineering Mathematics 9th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

9th EditionISBN: 9780471488859 (3 more)Erwin Kreyszig
4,201 solutions
Advanced Engineering Mathematics 6th Edition by Dennis G. Zill

Advanced Engineering Mathematics

6th EditionISBN: 9781284105902 (2 more)Dennis G. Zill
5,294 solutions
Advanced Engineering Mathematics 7th Edition by Dennis G. Zill

Advanced Engineering Mathematics

7th EditionISBN: 9781284206241Dennis G. Zill
5,289 solutions

More related questions

1/4

1/7