Try the fastest way to create flashcards
Question

Find a general solution. Check your answer by substitution ODEs of this kind have important applications to be discussed in Secs. 2.4, 2.7, and 2.9. 4y''-25y=0

Solutions

Verified
Answered 2 years ago
Step 1
1 of 2

4y25y=0            Homogeneous 2nd Order D.E , With Constant Coeff.{\color{#c34632} {4y''-25y=0}}\;\;\;\; \Rightarrow \;\; \textbf{Homogeneous 2nd Order D.E , With Constant Coeff.}

Form :      ay+by+cy=0  \Rightarrow \textbf{Form :}\;\; \boxed{\;ay''+by'+cy=0\;}

Where  :  a  ,  b  ,  c    ConstantsWhere\; : \;a\;,\;b\;,\;c \;\; \Rightarrow Constants

In  order  to  solve  this  D.E  ,  we  need  to  get  the  "characterestic  equation  "by  replacingIn\; order\; to\; solve\; this\; D.E \;, \;we\; need \;to\; get\; the\; "characterestic\; equation\;" by\; replacing

y        m2      ,      y        m      ,      y        1\boxed{y'' \;\; \Rightarrow \;\; m^{2}\;\;\;,\;\;\; y'\;\; \Rightarrow \;\; m\;\;\;,\;\;\;y\;\; \Rightarrow \;\; 1}

Then Characterestic Eq :        4m225=0\textbf{Then Characterestic Eq :}\;\; \Rightarrow \;\;{\color{#c34632} {4m^{2}-25=0}}

(2m5)(2m+5)=0(2m-5)(2m+5)=0

m1=52      ,      m2=52m_{1}=\dfrac{5}{2}\;\;\;,\;\;\;m_{2}=\dfrac{-5}{2}

    Solution is :   y=C1em1x+C2em2x\therefore \;\; \textbf{Solution is : }\; {\color{#c34632} {y=C_{1}e^{m_{1}x}+C_{2}e^{m_{2}x}}}

  y=C1e(5/2)x+C2e(5/2)x  \therefore \boxed{\;\color{#4257b2} {y=C_{1}e^{(5/2)x}+C_{2}e^{(-5/2)x}}\;}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Advanced Engineering Mathematics 10th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

10th EditionISBN: 9780470458365 (5 more)Erwin Kreyszig
4,134 solutions
Advanced Engineering Mathematics 9th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

9th EditionISBN: 9780471488859 (3 more)Erwin Kreyszig
4,201 solutions
Advanced Engineering Mathematics 6th Edition by Dennis G. Zill

Advanced Engineering Mathematics

6th EditionISBN: 9781284105902 (2 more)Dennis G. Zill
5,294 solutions
Advanced Engineering Mathematics 7th Edition by Dennis G. Zill

Advanced Engineering Mathematics

7th EditionISBN: 9781284206241Dennis G. Zill
5,289 solutions

More related questions

1/4

1/7