Question

Find a general solution. Check your answer by substitution. y''+4y'+(π²+4)y=0

Solutions

Verified
5 (6 ratings)
Step 1
1 of 2

The characteristic equation is

λ2+4λ+π2+4=0.\lambda ^2 + 4\lambda + \pi ^2 + 4 = 0.

Let's find the roots of the characteristic equation.

λ2+4λ+π2+4=0    λ1/2=4±424(π2+4)2    λ1/2=4±24π242=2±iπ    λ1=2+iπ,λ2=2iπ\begin{align*} \lambda ^2 + 4\lambda + \pi ^2 + 4 = 0 &\iff \lambda _{1/2} = \frac{-4 \pm \sqrt{4^2 -4(\pi ^2 + 4 )}}{2} \\ & \iff \lambda _{1/2} =\frac{-4 \pm 2\sqrt{\cancel{4} -\pi ^2 - \cancel{4} }}{2} = -2 \pm i\pi \\ & \iff \lambda _1 =-2 + i\pi, \quad \lambda _2 = -2 - i\pi \end{align*}

So, it has the complex conjugate roots:

λ1=2iπ(=a+ib)λ2=2iπ(=aib)\lambda _1 = -2 - i\pi (=a + ib)\quad \wedge \quad \lambda _2 = -2 - i\pi (=a-ib)

A basis is:

{ϕ1(x)=eaxcos(bx)=e2xcos(πx)ϕ2(x)=eaxsin(bx)=e2xsin(πx)\begin{align*} \begin{cases} & \phi _1 (x) = e^{ax} \cos (bx) = e^{-2 x} \cos (\pi x) \\ &\phi _2 (x) =e^{ax} \sin (bx) = e^{-2 x} \sin (\pi x) \end{cases} \\ \end{align*}

The general solution is:

y=c1ϕ1(x)+c2ϕ2(x)=c1e2xcos(πx)+c2e2xsin(πx)=e2x(c1cos(πx)+c2sin(πx))\begin{align*} y & = c_1 \phi _1 (x) + c_2 \phi _2 (x) \\ & = c_1e^{-2 x} \cos (\pi x) + c_2e^{-2 x} \sin (\pi x) \\ & = \boxed{{\color{#4257b2}{ e^{-2 x} (c_1\cos (\pi x) + c_2\sin (\pi x)) }}} \end{align*}

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Advanced Engineering Mathematics 10th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

10th EditionISBN: 9780470458365 (4 more)Erwin Kreyszig
4,134 solutions
Advanced Engineering Mathematics 9th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

9th EditionISBN: 9780471488859 (1 more)Erwin Kreyszig
4,201 solutions
Advanced Engineering Mathematics 7th Edition by Peter V. O'Neil

Advanced Engineering Mathematics

7th EditionISBN: 9781111427412 (2 more)Peter V. O'Neil
1,608 solutions
Advanced Engineering Mathematics 6th Edition by Dennis G. Zill

Advanced Engineering Mathematics

6th EditionISBN: 9781284105902 (5 more)Dennis G. Zill
5,294 solutions

More related questions

1/4

1/7