Try the fastest way to create flashcards
Question

Solutions

Verified
Step 1
1 of 2

${\color{#c34632} {y''+2\pi y'+\pi^{2} y=0}}\;\;\;\; \Rightarrow \;\; \textbf{Homogeneous 2nd Order D.E , With Constant Coeff.}$

$\Rightarrow \textbf{Form :}\;\; \boxed{\;ay''+by'+cy=0\;}$

$Where\; : \;a\;,\;b\;,\;c \;\; \Rightarrow Constants$

$In\; order\; to\; solve\; this\; D.E \;, \;we\; need \;to\; get\; the\; "characterestic\; equation\;" by\; replacing$

$\boxed{y'' \;\; \Rightarrow \;\; m^{2}\;\;\;,\;\;\; y'\;\; \Rightarrow \;\; m\;\;\;,\;\;\;y\;\; \Rightarrow \;\; 1}$

$\textbf{Then Characterestic Eq :}\;\; \Rightarrow \;\;{\color{#c34632} {m^{2}+2\pi m+\pi^{2} =0}}$

$m_{1,2}=\dfrac{-b \;\pm \sqrt{b^{2}-4ac}}{2a}=\dfrac{-2\pi \;\pm \sqrt{4\pi^{2} -4\pi^{2} }}{2}$

$m_{1,2}=\dfrac{-2\pi \;\pm 0}{2}$

$\boxed{\;m_{1,2}=-\pi\;}$

$\therefore \;\; \textbf{Solution is : }\; \boxed{\color{#c34632} {y=C_{1}e^{mx}+C_{2}xe^{mx}}}\;\;\; \Rightarrow \;\; \textbf{For Repeated Roots}$

$\therefore \boxed{\;\color{#4257b2} {y=C_{1}e^{-\pi x}+C_{2}xe^{-\pi x}}\;}$

## Recommended textbook solutions

10th EditionISBN: 9780470458365 (4 more)Erwin Kreyszig
4,134 solutions

9th EditionISBN: 9780471488859 (3 more)Erwin Kreyszig
4,201 solutions