Try the fastest way to create flashcards
Question

Find a general solution. Check your answer by substitution. y''+2πy'+π²y=0

Solutions

Verified
Answered 2 years ago
Step 1
1 of 2

y+2πy+π2y=0            Homogeneous 2nd Order D.E , With Constant Coeff.{\color{#c34632} {y''+2\pi y'+\pi^{2} y=0}}\;\;\;\; \Rightarrow \;\; \textbf{Homogeneous 2nd Order D.E , With Constant Coeff.}

Form :      ay+by+cy=0  \Rightarrow \textbf{Form :}\;\; \boxed{\;ay''+by'+cy=0\;}

Where  :  a  ,  b  ,  c    ConstantsWhere\; : \;a\;,\;b\;,\;c \;\; \Rightarrow Constants

In  order  to  solve  this  D.E  ,  we  need  to  get  the  "characterestic  equation  "by  replacingIn\; order\; to\; solve\; this\; D.E \;, \;we\; need \;to\; get\; the\; "characterestic\; equation\;" by\; replacing

y        m2      ,      y        m      ,      y        1\boxed{y'' \;\; \Rightarrow \;\; m^{2}\;\;\;,\;\;\; y'\;\; \Rightarrow \;\; m\;\;\;,\;\;\;y\;\; \Rightarrow \;\; 1}

Then Characterestic Eq :        m2+2πm+π2=0\textbf{Then Characterestic Eq :}\;\; \Rightarrow \;\;{\color{#c34632} {m^{2}+2\pi m+\pi^{2} =0}}

m1,2=b  ±b24ac2a=2π  ±4π24π22m_{1,2}=\dfrac{-b \;\pm \sqrt{b^{2}-4ac}}{2a}=\dfrac{-2\pi \;\pm \sqrt{4\pi^{2} -4\pi^{2} }}{2}

m1,2=2π  ±02m_{1,2}=\dfrac{-2\pi \;\pm 0}{2}

  m1,2=π  \boxed{\;m_{1,2}=-\pi\;}

    Solution is :   y=C1emx+C2xemx          For Repeated Roots\therefore \;\; \textbf{Solution is : }\; \boxed{\color{#c34632} {y=C_{1}e^{mx}+C_{2}xe^{mx}}}\;\;\; \Rightarrow \;\; \textbf{For Repeated Roots}

  y=C1eπx+C2xeπx  \therefore \boxed{\;\color{#4257b2} {y=C_{1}e^{-\pi x}+C_{2}xe^{-\pi x}}\;}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Advanced Engineering Mathematics 10th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

10th EditionISBN: 9780470458365 (4 more)Erwin Kreyszig
4,134 solutions
Advanced Engineering Mathematics 9th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

9th EditionISBN: 9780471488859 (3 more)Erwin Kreyszig
4,201 solutions
Advanced Engineering Mathematics 6th Edition by Dennis G. Zill

Advanced Engineering Mathematics

6th EditionISBN: 9781284105902 (8 more)Dennis G. Zill
5,294 solutions
Advanced Engineering Mathematics 7th Edition by Dennis G. Zill

Advanced Engineering Mathematics

7th EditionISBN: 9781284206241Dennis G. Zill
5,289 solutions

More related questions