Fresh features from the #1 AI-enhanced learning platform.Try it free
Fresh features from the #1 AI-enhanced learning platformCrush your year with the magic of personalized studying.Try it free
Question

Solutions

Verified
Step 1
1 of 2

${\color{#c34632} {10y''-32y'+25.6y=0}}\;\;\;\; \Rightarrow \;\; \textbf{Homogeneous 2nd Order D.E , With Constant Coeff.}$

$\Rightarrow \textbf{Form :}\;\; \boxed{\;ay''+by'+cy=0\;}$

$Where\; : \;a\;,\;b\;,\;c \;\; \Rightarrow Constants$

$In\; order\; to\; solve\; this\; D.E \;, \;we\; need \;to\; get\; the\; "characterestic\; equation\;" by\; replacing$

$\boxed{y'' \;\; \Rightarrow \;\; m^{2}\;\;\;,\;\;\; y'\;\; \Rightarrow \;\; m\;\;\;,\;\;\;y\;\; \Rightarrow \;\; 1}$

$\textbf{Then Characterestic Eq :}\;\; \Rightarrow \;\;{\color{#c34632} {10m^{2}-32m+25.6=0}}$

$m_{1,2}=\dfrac{-b \;\pm \sqrt{b^{2}-4ac}}{2a}=\dfrac{32\;\pm \sqrt{1024-1024}}{20}$

$m_{1,2}=\dfrac{32\;\pm 0}{20}=1.6\;\;\;,\;\;\; \Rightarrow \;\; \boxed{\;m=1.6\;}$

$\therefore \;\; \textbf{Solution is : }\; \boxed{\color{#c34632} {y=C_{1}e^{m x}+C_{2}xe^{m x}}}\;\;\; \Rightarrow \;\; \textbf{For Repeated Roots}$

$\therefore \boxed{\;\color{#4257b2} {y=C_{1}e^{1.6x}+C_{2}xe^{1.6x}}\;}$

Recommended textbook solutions

10th EditionISBN: 9780470458365 (3 more)Erwin Kreyszig
4,134 solutions

9th EditionISBN: 9780471488859 (1 more)Erwin Kreyszig
4,201 solutions