Fresh features from the #1 AI-enhanced learning platform.Try it free
Fresh features from the #1 AI-enhanced learning platformCrush your year with the magic of personalized studying.Try it free
Question

Find a general solution of the differential equation.

dy/dx=10x42x3dy/dx = 10x^4 - 2x^3

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 2

We will find the general solution\textbf{general solution} in the following way. [7pt] We have:

dydx=10x42x3dy=10x42x3 dxdy=(10x42x3) dx(Integrate each side of the equation)y=(10x42x3) dx=10x4 dx2x3 dx(Sum Rule f(x)±g(x)dx=f(x)dx±g(x)dx)=10x4 dx2x3 dx(Constant Out af(x)dx=af(x)dx)=10x4+14+12x3+13+1(Power Rule xa dx=xa+1a+1)=10x552x44(Simplify)=2x5x42=2x5x42+C(Add the Constant C)\begin{align*} \dfrac{d y}{d x} &=10 x^{4}-2 x^{3} \quad \Leftrightarrow \quad dy = 10 x^{4}-2 x^{3}\ dx \\[7pt] \int dy &= \int \left(10 x^{4}-2 x^{3}\right)\ dx &\left( \textit{Integrate each side of the equation} \right) \\[7pt] \boldsymbol{y} &= \int \left(10 x^{4}-2 x^{3}\right)\ dx \\[7pt] &= \int 10x^{4}\ dx-\int 2x^{3}\ dx &\left( \textit{Sum Rule } \boldsymbol{\int f(x) \pm g(x) d x=\int f(x) d x \pm \int g(x) d x} \right) \\[7pt] &= 10\int x^{4}\ dx-2\int x^{3}\ dx &\left( \textit{Constant Out } \boldsymbol{\int a \cdot f(x) d x=a \cdot \int f(x) d x} \right) \\[7pt] &= 10\cdot \frac{x^{4+1}}{4+1} - 2\cdot \frac{x^{3+1}}{3+1} &\left( \textit{Power Rule } \boldsymbol{\int x^{a}\ dx=\frac{x^{a+1}}{a+1}} \right) \\[7pt] &= 10\cdot \frac{x^{5}}{5} - 2\cdot \frac{x^{4}}{4} &\left( \textit{Simplify} \right) \\[7pt] &= 2 \cdot x^{5} - \frac{x^{4}}{2} \\[7pt] &= \boldsymbol{\color{#4257b2}2x^5-\dfrac{x^4}{2}+C} &\left( \textit{Add the Constant } \boldsymbol{C} \right) \end{align*}

Therefore, the general solution\textbf{general solution} of the given differential equation is y=2x5x42+C\boxed{\boldsymbol{y=2x^5-\dfrac{x^4}{2}+C}}

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (8 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,144 solutions
Calculus 10th Edition by Bruce H. Edwards, Ron Larson

Calculus

10th EditionISBN: 9781285057095 (5 more)Bruce H. Edwards, Ron Larson
12,386 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (5 more)James Stewart
11,085 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927Daniel K. Clegg, James Stewart, Saleem Watson
11,048 solutions

More related questions

1/4

1/7