## Related questions with answers

Question

Find each integral. $\int(\cos x-1) d x$

Solution

VerifiedStep 1

1 of 2$\begin{align*} \int (\cos{x}-1)dx =\int\cos{x}dx-\int{1}dx\\ =\sin{x}-x+C\\ \implies \int(\cos{x}-1)dx=\sin{x}-x+C \end{align*}$

Where $C$ is constant of integration

By using standard integrals

$\int\cos{x} dt=\sin{x}$

and

$\int1dx=x$

Where $C$ is constant of integration

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir10,142 solutions

#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (6 more)James Stewart11,084 solutions

#### Applied Calculus

7th Edition•ISBN: 9781305085312 (1 more)Andrew M. Rockett, Geoffrey C. Berresford4,702 solutions

#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson11,050 solutions

## More related questions

- anatomy and physiology

1/4

- anatomy and physiology

1/7