Try the fastest way to create flashcards
Question

Find v×w\mathbf{v} \times \mathbf{w} for the vectors given.

v=k;w=k\mathbf{v}=\mathbf{k} ; \mathbf{w}=\mathbf{k}

Solution

Verified
Answered 2 years ago
Answered 2 years ago

The given vectors are v=k;w=kv =k;w =k. The cross product is

v×w=ijk001001=0101i0101j+0000k=((0)(1)(1)(0))i((0)(1)(1)(0))j+((0)(0)(0)(0))k=0+0+0=0\begin{gather*} v \times w&=&\left|\begin{array}{ccc}\mathbf{\vec{i}} & \mathbf{\vec{j}} & \mathbf{\vec{k}}\\0 & 0 & 1\\0 & 0 & 1\end{array}\right| \\&=& \left|\begin{array}{cc}0 & 1\\0 & 1\end{array}\right| \mathbf{\vec{i}} - \left|\begin{array}{cc}0 & 1\\0 & 1\end{array}\right| \mathbf{\vec{j}} + \left|\begin{array}{cc}0 & 0\\0 & 0\end{array}\right| \mathbf{\vec{k}} \\&=& \left(\left(0\right)\cdot \left(1\right) - \left(1\right)\cdot \left(0\right)\right) \mathbf{\vec{i}} - \left(\left(0\right)\cdot \left(1\right) - \left(1\right)\cdot \left(0\right)\right) \mathbf{\vec{j}} + \left(\left(0\right)\cdot \left(0\right) - \left(0\right)\cdot \left(0\right)\right) \mathbf{\vec{k}} \\&=& 0 + 0 + 0=0 \end{gather*}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (4 more)James Stewart
11,085 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,049 solutions
Calculus 6th Edition by Karl J. Smith, Magdalena D. Toda, Monty J. Strauss

Calculus

6th EditionISBN: 9781465208880 (1 more)Karl J. Smith, Magdalena D. Toda, Monty J. Strauss
5,412 solutions

More related questions

1/4

1/7