Try the fastest way to create flashcards
Question

Find the average rate of change of the function over the given interval. Compare this average rate of change with the instantaneous rates of change at the endpoints of the interval. f(t)=3t+5, [1, 2]

Solution

Verified
Answered 9 months ago
Answered 9 months ago
Step 1
1 of 2

\hspace*{5mm} We need to find the average rate of change of the function

f(t)=3t+5,  [1,2]\color{#4257b2}{f(t)=3 t+5, \ \ [1,2]}

Δf(t)Δt=f(2)f(1)21=((3(2)+5)(3(1)+5))1=(6+5)(3+5)=118\begin{align*} \frac{\Delta f(t)}{\Delta t} &=\frac{f(2)-f(1)}{2-1} \\ &=\frac{((3(2)+5)-(3(1)+5))}{1} \\ &=(6+5)-(3+5) \\ &=11-8 \end{align*}

\hspace*{5mm}From this we have,

ΔfΔt=118=3\begin{align*} \frac{\Delta f}{\Delta t} &=11-8 \\ &=3 \end{align*}

The average rate of change is in given interval\color{#c34632}{\text{The average rate of change is in given interval}}

limxΔf(t)Δt=ddt(f(t))=f(t)\begin{align*} \lim _{x \rightarrow \infty} \frac{\Delta f(t)}{\Delta t} &=\frac{d}{d t}(f(t)) \\ &=f^{\prime}(t) \end{align*}

\hspace*{5mm}Differentiate the given function with respect to t is

f(t)=ddt(3t+5)=3\begin{align*} f^{\prime}(t) &=\frac{d}{d t}(3 t+5) \\ &=3 \end{align*}

f(t)t=1=3 and f(t)t=2=3\color{#c34632}{f^{\prime}(t)_{t=1}=3\text{ and }f^{\prime}(t)_{t=2}=3}

\hspace*{5mm}The instantaneous rate of change at the end intervals is same and is equal to 3.3 .It can be seen that the average rate of change and the instantaneous rate of change at the end points are same.

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (6 more)James Stewart
11,081 solutions
Calculus: Early Transcendental Functions 7th Edition by Ron Larson

Calculus: Early Transcendental Functions

7th EditionISBN: 9781337552516Ron Larson
12,100 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7