Try the fastest way to create flashcards
Question

Find the average value of f(x, y) over the plane region R. f(x, y) = x R: rectangle with vertices (0, 0), (4, 0), (4, 2), (0, 2)

Solution

Verified
Answered 9 months ago
Answered 9 months ago
Step 1
1 of 3

If ff is integrable over the plane region RR, then the average value of ff over RR is

Avg=1ARf(x,y)dAA_{vg} = \dfrac{1}{A}\int_{R}^{} \int_{}^{} f(x,y) \,dA

where

AA is the area of region RR

Now

1ARf(x,y)dA=14×20204xdxdy=1802x2204dy=1802(422022)dy=1802(80)dy=021dy=y02=20=2\begin{align*} \dfrac{1}{A}\int_{R}^{} \int_{}^{} f(x,y) \,dA &= \dfrac{1}{4 \times 2}\int_{0}^{2} \int_{0}^{4} x \,dx \,dy \\ &= \dfrac{1}{8}\int_{0}^{2} \eval{\dfrac{x^2}{2}}_{0}^{4} \,dy \\ &= \dfrac{1}{8}\int_{0}^{2} \qty(\dfrac{4^2}{2} - \dfrac{0^2}{2} ) \,dy \\ &= \dfrac{1}{8}\int_{0}^{2} (8 - 0 ) \,dy \\ &= \int_{0}^{2} 1 \,dy \\ &= \eval{y}_{0}^{2} \\ &= 2-0 \\ &= 2 \end{align*}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus 10th Edition by Bruce H. Edwards, Ron Larson

Calculus

10th EditionISBN: 9781285057095 (7 more)Bruce H. Edwards, Ron Larson
12,387 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (6 more)James Stewart
11,084 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7