Try the fastest way to create flashcards
Question

Find the change-of-basis matrix

PCBP_{C \leftarrow B}

from the given ordered basis B to the given ordered basis C of the vector space V.

V=P2(R);B={2+x2,16x+8x2,73x9x2};C={1+x,x+x2,1+2x2}.\left. \begin{array} { l } { V = P _ { 2 } ( \mathbb { R } ) ; } \\ { B = \left \{ 2 + x ^ { 2 } , - 1 - 6 x + 8 x ^ { 2 } , - 7 - 3 x - 9 x ^ { 2 } \right\} }; \\ { C = \left \{1 + x , - x + x ^ { 2 } , 1 + 2 x ^ { 2 } \right\} }. \end{array} \right.

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 2

Consider the ordered basis B={2+x2,16x+8x2,73x9x2}B=\left\{2+x^2,-1-6x+8x^2,-7-3x-9x^2\right\} and C={1+x,x+x2,1+2x2}C=\left\{1+x,-x+x^2,1+2x^2\right\} for P3P_3.

In order to find [2+x2]C\left[2+x^2\right]_C, [16x+8x2]C\left[-1-6x+8x^2\right]_C and [73x9x2]C\left[-7-3x-9x^2\right]_C we must solve the equations

a1(1+x)+a2(x+x2)+a3(1+2x2)=2+x2a_1(1+x)+a_2(-x+x^2)+a_3(1+2x^2)=2+x^2, b1(1+x)+b2(x+x2)+b3(1+2x2)=16x+8x2b_1(1+x)+b_2(-x+x^2)+b_3(1+2x^2)=-1-6x+8x^2 and c1(1+x)+c2(x+x2)+c3(1+2x2)=73x9x2c_1(1+x)+c_2(-x+x^2)+c_3(1+2x^2)=-7-3x-9x^2.

Since a1(1+x)+a2(x+x2)+a3(1+2x2)=a1+a1xa2x+a2x2+a3+2a3x2=(a1+a3)+(a1a2)x+(a2+2a3)x2a_1(1+x)+a_2(-x+x^2)+a_3(1+2x^2)=a_1+a_1x-a_2x+a_2x^2+a_3+2a_3x^2=(a_1+a_3)+(a_1-a_2)x+(a_2+2a_3)x^2 the first equation requires that a1+a3=2a_1+a_3=2, a1a2=0a_1-a_2=0 and a2+2a3=1a_2+2a_3=1.

Then we have that (2)(a1+a3)+a1a2+a2+2a3=(2)2+0+1(-2)(a_1+a_3)+a_1-a_2+a_2+2a_3=(-2)\cdot 2+0+1 which gives us that a1=3-a_1=-3 and then a1=3a_1=3.

Since a1=3a_1=3, a1+a3=2a_1+a_3=2 and a1a2=0a_1-a_2=0 we have that 3+a3=23+a_3=2 and 3a2=03-a_2=0 and then a2=3a_2=3 and a3=1a_3=-1.

Since b1(1+x)+b2(x+x2)+b3(1+2x2)=b1+b1xb2x+b2x2+b3+2b3x2=(b1+b3)+(b1b2)x+(b2+2b3)x2b_1(1+x)+b_2(-x+x^2)+b_3(1+2x^2)=b_1+b_1x-b_2x+b_2x^2+b_3+2b_3x^2=(b_1+b_3)+(b_1-b_2)x+(b_2+2b_3)x^2 the second equation requires that b1+b3=1b_1+b_3=-1, b1b2=6b_1-b_2=-6 and b2+2b3=8b_2+2b_3=8.

Then we have that (2)(b1+b3)+b1b2+b2+2b3=(2)(1)6+8(-2)(b_1+b_3)+b_1-b_2+b_2+2b_3=(-2)\cdot(-1)-6+8 which gives us that b1=4-b_1=4 and then b1=4b_1=-4.

Since b1=4b_1=-4, b1+b3=1b_1+b_3=-1 and b1b2=6b_1-b_2=-6 we have that 4+b3=1-4+b_3=-1 and 4b2=6-4-b_2=-6 and then b2=2b_2=2 and b3=3b_3=3.

Since c1(1+x)+c2(x+x2)+c3(1+2x2)=c1+c1xc2x+c2x2+c3+2c3x2=(c1+c3)+(c1c2)x+(c2+2c3)x2c_1(1+x)+c_2(-x+x^2)+c_3(1+2x^2)=c_1+c_1x-c_2x+c_2x^2+c_3+2c_3x^2=(c_1+c_3)+(c_1-c_2)x+(c_2+2c_3)x^2 the third equation requires that c1+c3=7c_1+c_3=-7, c1c2=3c_1-c_2=-3 and c2+2c3=9c_2+2c_3=-9.

Then we have that (2)(c1+c3)+c1c2+c2+2c3=(2)(7)39(-2)(c_1+c_3)+c_1-c_2+c_2+2c_3=(-2)\cdot(-7)-3-9 which gives us that c1=2-c_1=2 and then c1=2c_1=-2.

Since c1=2c_1=-2, c1+c3=7c_1+c_3=-7 and c1c2=3c_1-c_2=-3 we have that 2+c3=7-2+c_3=-7 and 2c2=3-2-c_2=-3 and then c2=1c_2=1 and c3=5c_3=-5.

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Differential Equations and Linear Algebra 2nd Edition by Beverly H. West, Hall, Jean Marie McDill, Jerry Farlow

Differential Equations and Linear Algebra

2nd EditionISBN: 9780131860612 (1 more)Beverly H. West, Hall, Jean Marie McDill, Jerry Farlow
2,405 solutions
Differential Equations and Linear Algebra 4th Edition by C. Henry Edwards, David Calvis, David E. Penney

Differential Equations and Linear Algebra

4th EditionISBN: 9780134497181 (3 more)C. Henry Edwards, David Calvis, David E. Penney
2,531 solutions
Differential Equations and Linear Algebra 4th Edition by Scott A. Annin, Stephen W. Goode

Differential Equations and Linear Algebra

4th EditionISBN: 9780321964670Scott A. Annin, Stephen W. Goode
3,457 solutions
Linear Algebra and Differential Equations (Custom Edition for University of California, Berkeley) 2nd Edition by David C. Lay, Nagle, Saff, Snider

Linear Algebra and Differential Equations (Custom Edition for University of California, Berkeley)

2nd EditionISBN: 9781256873211David C. Lay, Nagle, Saff, Snider
2,362 solutions

More related questions

1/4

1/7