Question

# Find the derivative of the function. $f(x)=\left(1+x^{4}\right)^{2 / 3}$

Solution

Verified
Step 1
1 of 2

$\begin{gathered} f\left( x \right) = {\left( {1 + {x^4}} \right)^{2/3}} \\ \textcolor{#4257b2}{{\text{Apply The Power Rule Combined with the Chain Rule}}} \\ \frac{d}{{dx}}{\left[ {g\left( x \right)} \right]^n} = n{\left[ {g\left( x \right)} \right]^{n - 1}} \cdot g'\left( x \right) \\ \textcolor{#4257b2}{ {\text{Therefore}}{\text{,}}} \\ f'\left( x \right) = \overbrace {\frac{2}{3}{{\left( {1 + {x^4}} \right)}^{2/3 - 1}}}^{n{{\left[ {g\left( x \right)} \right]}^{n - 1}}}\overbrace {\frac{d}{{dx}}\left[ {1 + {x^4}} \right]}^{g'\left( x \right)} \\ f'\left( x \right) = \frac{2}{3}{\left( {1 + {x^4}} \right)^{ - 1/3}}\left( {4{x^3}} \right) \\ \textcolor{#4257b2}{ {\text{Simplify and rewrite}}} \\ f'\left( x \right) = \frac{{8{x^3}}}{{3{{\left( {1 + {x^4}} \right)}^{1/3}}}} \\ f'\left( x \right) = \frac{{8{x^3}}}{{3\sqrt[3]{{1 + {x^4}}}}} \\ \end{gathered}$

## Recommended textbook solutions

#### Biology

1st EditionISBN: 9780132013499 (4 more)Kenneth R. Miller, Levine
2,470 solutions

#### Nelson Science Perspectives 10

1st EditionISBN: 9780176355289Christy C. Hayhoe, Doug Hayhoe, Jeff Major, Maurice DiGiuseppe
1,359 solutions

#### Miller and Levine Biology

1st EditionISBN: 9780328925124 (2 more)Joseph S. Levine, Kenneth R. Miller
1,773 solutions

#### Biocalculus: Calculus for the Life Sciences

1st EditionISBN: 9781133109631 (1 more)Day, Stewart
5,058 solutions