Try the fastest way to create flashcards
Question

Find the derivative of y with respect to the given independent variable:y=log3((x+1x1)ln3)y=\log _{3}\left(\left(\frac{x+1}{x-1}\right)^{\ln 3}\right)

Solutions

Verified
Step 1
1 of 2

We will use the properties of logarithms to simplify the function first before we differentiate:

y=log3(x+1x1)ln3=(4b)ln3log3(x+1x1)=(2b)ln3[log3(x+1)log3(x1)]\begin{align*} y &= \log_3 \left(\dfrac{x + 1}{x - 1} \right)^{\ln 3}\\ &\stackrel{(4b)}= \ln 3\log_3 \left(\dfrac{x + 1}{x - 1} \right)\\ &\stackrel{(2b)}= \ln 3[\log_3 (x + 1) - \log_3 (x - 1)] \end{align*}

Now by Formula 8 on the above expression (on both terms), we have:

y=ln3[1(x+1)ln311(x1)ln31]=1x+11x1=(x1)(x+1)(x+1)(x1)=2x21\begin{align*} y' &= \ln 3\left[ \dfrac{1}{(x + 1)\ln 3} \cdot 1 -\dfrac{1}{(x - 1)\ln 3} \cdot 1 \right]\\ &= \dfrac{1}{x + 1} - \dfrac{1}{x - 1}\\ &=\dfrac{(x -1) - (x + 1)}{(x + 1)(x -1)}\\ &=-\dfrac{2}{x^2 - 1} \end{align*}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 10th Edition by Howard Anton, Irl C. Bivens, Stephen Davis

Calculus: Early Transcendentals

10th EditionISBN: 9780470647691Howard Anton, Irl C. Bivens, Stephen Davis
10,488 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (5 more)James Stewart
11,084 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7