Try the fastest way to create flashcards
Question

Find the eigenvalues, and if necessary the corresponding eigenvectors, of A and determine whether A is diagonalizable.

A=[0000101001011111]A=\left[\begin{array}{llll} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{array}\right]

Solution

Verified
Step 1
1 of 3

A=[0000101001011111]A=\left[ \begin{array}{llll}{0} & {0} & {0} & {0} \\ {1} & {0} & {1} & {0} \\ {0} & {1} & {0} & {1} \\ {1} & {1} & {1} & {1}\end{array}\right]

The eigenvalues will be solutions of characteristic equation. Since, we know the characteristic equation form is det (AλI)=0(A-\lambda I)=0 thus,

det[λ0001λ1001λ11111λ]=0det\left[ \begin{array}{llll}{-\lambda} & {0} & {0} & {0} \\ {1} & {-\lambda} & {1} & {0} \\ {0} & {1} & {-\lambda} & {1} \\ {1} & {1} & {1} & {1-\lambda}\end{array}\right]=0

λ[λ101λ1111λ]=0-\lambda\left[ \begin{array}{lll}{-\lambda} & {1} & {0} \\ {1} & {-\lambda} & {1} \\ {1} & {1} & {1-\lambda} \end{array}\right]=0

λ4λ32λ2=0\lambda^{4}-\lambda^{3}-2\lambda^{2}=0

λ=0,1,2\lambda=0,-1,2

Eigenvalues are 0,10,-1 and 22 with multiplicity 22, the eigenvector of corresponding eigenvalues for λ=0\lambda =0

[0000101001011111][xyzu]=[0000]\left[ \begin{array}{llll}{0} & {0} & {0} & {0} \\ {1} & {0} & {1} & {0} \\ {0} & {1} & {0} & {1} \\ {1} & {1} & {1} & {1}\end{array}\right]\left[ \begin{array}{rrrr}{x} \\ {y} \\{z}\\{u}\end{array}\right]=\left[ \begin{array}{rrrr}{0} \\ {0}\\{0}\\{0} \end{array}\right]

x=zx=-z

y=uy=-u

So, eigenvector will be

v1={t[1010]tϵRs[0101]sϵR}v_{1}=\left\{t\left[ \begin{array}{rrrr}{1} \\ {0}\\{-1} \\{0}\end{array}\right]\hskip 0.5em t\epsilon R \hskip 0.5em s\left[ \begin{array}{rrrr}{0} \\ {1}\\{0} \\{-1}\end{array}\right]\hskip 0.5em s\epsilon R \right\}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Linear Algebra and Its Applications 5th Edition by David C. Lay, Judi J. McDonald, Steven R. Lay

Linear Algebra and Its Applications

5th EditionISBN: 9780321982384 (3 more)David C. Lay, Judi J. McDonald, Steven R. Lay
2,070 solutions
Elementary Linear Algebra 11th Edition by Howard Anton

Elementary Linear Algebra

11th EditionISBN: 9781118473504Howard Anton
2,932 solutions
Elementary Linear Algebra 12th Edition by Anton Kaul, Howard Anton

Elementary Linear Algebra

12th EditionISBN: 9781119406778Anton Kaul, Howard Anton
3,078 solutions
Introduction to Linear Algebra with Applications 1st Edition by Daniel Gagliardi, James DeFranza

Introduction to Linear Algebra with Applications

1st EditionISBN: 9781478627777 (3 more)Daniel Gagliardi, James DeFranza
1,494 solutions

More related questions

1/4

1/7