Try the fastest way to create flashcards
Question

Find the exact value of the expression.

cos (-165 degrees)

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 2

Cosine is a even function, so cos(165°)=cos165°\cos(-165\text{\textdegree})=\cos 165\text{\textdegree}.

Notice that 165°=120°+45°165\text{\textdegree}=120\text{\textdegree}+45\text{\textdegree}, so

cos(165°)=cos165°=cos(120°+45°)\cos (-165\text{\textdegree})=\cos 165\text{\textdegree}=\cos(120\text{\textdegree}+45\text{\textdegree})

Apply formula (1):

cos(120°+45°)==cos120°cos45°sin120°sin45°==12223222==2464==624\cos(120\text{\textdegree}+45\text{\textdegree})=\\\\ =\cos 120\text{\textdegree}\cos 45\text{\textdegree}-\sin 120\text{\textdegree}\sin 45\text{\textdegree}=\\\\ =-\dfrac{1}{2}\cdot \dfrac{\sqrt 2}{2}-\dfrac{\sqrt 3}{2}\cdot \dfrac{\sqrt 2}{2}=\\\\ =-\dfrac{\sqrt 2}{4}-\dfrac{\sqrt 6}{4}=\\\\ =\dfrac{-\sqrt 6-\sqrt 2}{4}

Sum and Difference Formulas for Cosine and Sine:

  1. cos(a±b)=cosacosbsinasinb\cos(a\pm b)=\cos a\cos b\mp \sin a\sin b

  2. sin(a±b)=sinacosb±cosasinb\sin (a\pm b)=\sin a\cos b\pm \cos a\sin b

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

enVision Algebra 2 1st Edition by Al Cuoco

enVision Algebra 2

1st EditionISBN: 9780328931590 (1 more)Al Cuoco
3,573 solutions
Precalculus: Mathematics for Calculus 7th Edition by James Stewart, Lothar Redlin, Saleem Watson

Precalculus: Mathematics for Calculus

7th EditionISBN: 9781305253810James Stewart, Lothar Redlin, Saleem Watson
Big Ideas Math Algebra 2: A Common Core Curriculum 1st Edition by Boswell, Larson

Big Ideas Math Algebra 2: A Common Core Curriculum

1st EditionISBN: 9781608408405Boswell, Larson
5,067 solutions

More related questions

1/4

1/7