Question

Find the following ratio DEF\triangle D E F where mEm \angle E = 9090^\circ DE = 4, EF= 3, DF = 5.

sinD\sin D

Solution

Verified
Step 1
1 of 2

Recall that:

sinθ=length of the side opposite to the angle θlength of the hypotenuse\sin\theta=\dfrac{\text{length of the side {\color{#c34632}\bf{}opposite} to the angle $\theta$}}{\text{length of the {\color{#c34632}\bf{}hypotenuse}}}

Use the given figure to substitute the lengths of

oppositeside{\color{#c34632}\bf{}opposite side}

and

hypotenuse{\color{#c34632}\bf{}hypotenuse}

.

sinD=FEDF=35\sin D=\dfrac{FE}{DF}=\dfrac{3}{5}

Create an account to view solutions

Create an account to view solutions

More related questions

1/4

1/7