Try the fastest way to create flashcards
Question

Find the general solution. Indicate which method in this chapter you are using. Show the details of your work. y'+2.5y=1.6x

Solution

Verified
Step 1
1 of 3

This is linear, non-homogeneous ODE\textbf{linear, non-homogeneous ODE}.

In this case, we have:

p(x)=2.5    h=2.5p  dx=2.5dx=2.5xr(x)=1.6x\begin{align*} p(x) &= 2.5 \implies h = 2.5\int p \; dx = 2.5\int dx =2.5 x \\ r(x) &= 1.6 x \end{align*}

From this, we can see that:

eh=e2.5xeh=e2.5xreh=1.6xe2.5xe^h = e^{2.5x} \quad \wedge \quad e^{-h} = e^{-2.5x} \quad \wedge \quad re^h = 1.6 x e^{2.5x}

So, the general solution is:

y(x)=eh(c+reh  dx)=e2.5x(c+1.6xe2.5x  dx(*)Solved below)=e2.5x(c+1.60.4e2.5x(x0.4))=ce2.5x+0.64e2.5xe2.5x(x0.4)=ce2.5x+0.64x0.256\begin{align*} y(x) &= e^{-h} \left(c + \int re^h \; dx \right)\\ & = e^{-2.5x}\Big(c + 1.6\overbrace{\int xe^{2.5x} \; dx}^{\begin{smallmatrix} \text{\textcolor{Fuchsia}{(*)}} \; \text{Solved below} \end{smallmatrix}} \Big) \\ & = e^{-2.5x}\Big(c + 1.6 \cdot 0.4 e^{2.5x}\left( x - 0.4 \right) \Big) \\ & = ce^{-2.5x} + 0. 64\cancel{e^{-2.5x}} \cancel{e^{2.5x}} \left( x - 0.4 \right) \\ & = \boxed{{\color{#4257b2}{ce^{-2.5x} + 0. 64x - 0.256 }}} \end{align*}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Advanced Engineering Mathematics 10th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

10th EditionISBN: 9780470458365 (5 more)Erwin Kreyszig
4,134 solutions
Advanced Engineering Mathematics 9th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

9th EditionISBN: 9780471488859 (3 more)Erwin Kreyszig
4,201 solutions
Advanced Engineering Mathematics 6th Edition by Dennis G. Zill

Advanced Engineering Mathematics

6th EditionISBN: 9781284105902 (2 more)Dennis G. Zill
5,294 solutions
Advanced Engineering Mathematics 7th Edition by Dennis G. Zill

Advanced Engineering Mathematics

7th EditionISBN: 9781284206241Dennis G. Zill
5,289 solutions

More related questions

1/4

1/7