Question

Find the horizontal and vertical asymptotes of the graph of the function. (You need not sketch the graph.) g(x)=x3x24g(x)=\frac{x^{3}}{x^{2}-4}

Solution

Verified
Step 1
1 of 3

Let's solve the exercise:

First, we will try to find vertical asymptotes\textbf{vertical asymptotes} using the rule for Finding Vertical Asymptotes of Rational Functions\textbf{Finding Vertical Asymptotes of Rational Functions}:

P(x)=x3Q(x)=x24Q(x)=0x24=0x2=4x=±2\begin{align*} P(x)&=x^3 \\ Q(x)&=x^2-4 \\ \\ Q(x)&=0 \\ x^2-4&=0 \\ x^2&=4 \\ \color{#c34632}x&\color{#c34632}=\pm 2 \\ \end{align*}

We can conclude that x=2x=-2 and x=2x=2 are vertical asymptotes\textbf{vertical asymptotes}. (P(±2)0P(\pm 2)\ne0)

Now, let's try to find horizontal asymptotes\textbf{horizontal asymptotes}. We need to find a limit either when xx \to \infty or xx\to -\infty:

limx(x3x24)=limxx3x2x2x24x2Divide numerator and denominator by x2.=limxx14x2Calculate.=10=Simplify.\begin{align*} \lim_{x\to\infty} \left(\frac{x^3}{x^2-4}\right) &=\lim_{x\to\infty} \frac{\frac{x^3}{x^2}}{\frac{x^2}{x^2}-\frac{4}{x^2}} && \text{Divide numerator and denominator by $x^2$.}\\ &=\lim_{x\to\infty} \frac{x}{1-\frac{4}{x^2}} && \text{Calculate.}\\ &=\frac{\infty}{1-0} \\ &\color{#c34632}=\infty && \text{Simplify.}\\ \end{align*}

We can conclude that there are no horizontal asymptotes\textbf{horizontal asymptotes}.

Check the graph below!

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Calculus: Early Transcendentals 7th Edition by James Stewart

Calculus: Early Transcendentals

7th EditionISBN: 9780538497909James Stewart
10,082 solutions
Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach 10th Edition by Tan, Soo

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

10th EditionISBN: 9781285464640 (4 more)Tan, Soo
5,088 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (6 more)James Stewart
11,083 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (4 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7