## Related questions with answers

Question

Find the indefinite integral.

$\int \cosh 4 x d x$

Solution

VerifiedAnswered 9 months ago

Answered 9 months ago

Step 1

1 of 2Let $u = 4x \Rightarrow du =4dx \Rightarrow \dfrac{du}{4}=dx$. We substitute to obtain :

$\begin{align*} \int \cosh (4x) dx&=\int \cosh u \dfrac{du}{4}&\color{#c34632} \text{(Integral in terms of $u$)}\\\\ &=\dfrac{1}{4} \int \cosh u\;du &\color{#c34632} \text{(Constant Multiple Rule)}\\\\ &=\dfrac{1}{4} \sinh u +C&\color{#c34632} \text{(Antiderivative in terms of $u$)} \\\\ &=\color{#4257b2}\boxed{\dfrac{1}{4} \sinh (4x)+C}&\color{#c34632} \text{(Antiderivative in terms of $x$)} \end{align*}$

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir10,142 solutions

#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (6 more)James Stewart11,081 solutions

#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson11,050 solutions

## More related questions

- prealgebra

1/4

- prealgebra

1/7