Try Magic Notes and save time.Try it free
Try Magic Notes and save timeCrush your year with the magic of personalized studying.Try it free
Question

# Find the length to three significant digits of each arc intercepted by a central angle $\theta$ in a circle of radius r. r=15.1 in., $\theta=210^{\circ}$

Solution

Verified
Step 1
1 of 4

$210\text{\textdegree} = 210\cdot 1\text{\textdegree}$

$\text{\color{#4257b2}Recall that:$180\text{\textdegree} = \pi $radians}$. Therefore, we can substitute $1\text{\textdegree} = \dfrac{\pi }{180}\text{ radians}$

$= 210\cdot \dfrac{\pi }{180}\text{ radians}$

$= (\cancel{30}\cdot 7)\cdot \dfrac{\pi }{(\cancel{30}\cdot 6)}\text{ radians}$

$= \dfrac{7\pi}{6} \text{ radians}$

## Recommended textbook solutions #### Algebra and Trigonometry for College Readiness

1st EditionISBN: 9780131366268John Hornsby, Margaret L. Lial
7,830 solutions #### Algebra and Trigonometry

1st EditionISBN: 9780470470817Sheldon Axler
114 solutions #### Algebra and Trigonometry

1st EditionISBN: 9780470585795 (3 more)Sheldon Axler
114 solutions #### Zbirka Rešenih Zadataka iz Matematike 2

ISBN: 9788617174611Vene T. Bogoslavov