Try the fastest way to create flashcards
Question

Find the limit of the following sequence or determine that the sequence diverges. {1nx2dx}\left\{\int_{1}^{n} x^{-2} d x\right\}

Solution

Verified
Step 1
1 of 2

Since

1nx2dx=1x1n=1n+1\int\limits_{1}^{n} x^{-2}\,dx=-\dfrac {1} {x}\bigg|_{1}^{n}=-\dfrac {1} {n}+1

we have

limn(11n)=limn1limn1n=10=0=1\lim\limits_{n \to \infty} \left(1- \frac {1} {n} \right)= \lim\limits_{n \to \infty}1- \lim\limits_{n \to \infty } \frac {1} {n}=1-0=0=1

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 3rd Edition by Bernard Gillett, Eric Schulz, Lyle Cochran, William L. Briggs

Calculus: Early Transcendentals

3rd EditionISBN: 9780134763644 (5 more)Bernard Gillett, Eric Schulz, Lyle Cochran, William L. Briggs
13,437 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (7 more)James Stewart
11,084 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7