Try the fastest way to create flashcards
Question

Find the minimum distance from the point (2, -1, 1) to the plane x + y - z = 2.

Solution

Verified
Answered 1 year ago
Answered 1 year ago
Step 1
1 of 2

Let A(2,1,1)A(2,-1,1) and B(x,y,z)B(x,y,z), then we get the following:

d(AB)=(x2)2+(y+1)2+(z1)2=(x2)2+(y+1)2+(z1)2d(AB)=\sqrt{(x-2)^2+(y+1)^2+(z-1)^2}=\sqrt{(x-2)^2+(y+1)^2+(z-1)^2}

So, we will minimize d(AB)=(x2)2+(y+1)2+(z1)2d(AB)=\sqrt{(x-2)^2+(y+1)^2+(z-1)^2} if we minimize D(AB)=(x2)2+(y+1)2+(z1)2D(AB)=(x-2)^2+(y+1)^2+(z-1)^2. We are given that the plane is x+yz=2z=x+y2x+y-z=2 \Rightarrow z=x+y-2. Now, we get the following:

D(x,y)=(x2)2+(y+1)2+(x+y3)2Dx=2(x2)+2(x+y3)=0,Dy=2(y+1)+2(x+y3)=0D(x,y)=(x-2)^2+(y+1)^2+(x+y-3)^2 \Rightarrow D_x=2(x-2)+2(x+y-3)=0, D_y=2(y+1)+2(x+y-3)=0

x=83,y=13,z=13\Rightarrow x=\dfrac{8}{3}, y=-\dfrac{1}{3}, z=\dfrac{1}{3}

So, we got that the critical point is (83,13)\left(\dfrac{8}{3}, -\dfrac{1}{3} \right), then we get

Dxx=4>0,Dyy=4,Dxy=2DxxDyy(Dyy)2=12>0D_{xx}=4>0, D_{yy}=4, D_{xy}=2 \Rightarrow D_{xx}D_{yy}-(D_{yy})^2=12>0

The conclusion is that the point (83,13,13)\left(\dfrac{8}{3}, -\dfrac{1}{3}, \dfrac{1}{3} \right) is the point of a local minimum of DD, which means that is required point.

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (6 more)James Stewart
11,084 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,049 solutions
Calculus 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus

9th EditionISBN: 9781337624183 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson
10,873 solutions

More related questions