## Related questions with answers

Find the most general antiderivative of the function. (Check your answer by differentiation.)

$f ( x ) = e ^ { 2 }$

Solution

Verified$\begin{gathered} f\left( x \right) = {e^2} \\ \textcolor{#4257b2}{{\text{Find an antiderivative }}F\left( x \right) = \int {f\left( x \right)} dx} \\ F\left( x \right) = \int {{e^2}} dx \\ F\left( x \right) = {e^2}\int {dx} \\ \textcolor{#4257b2}{{\text{Apply }}\int {dx = x + C,{\text{ so}}}} \\ F\left( x \right) = {e^2}x + C \\ \textcolor{#4257b2}{{\text{Check by differentiation}}} \\ f\left( x \right) = F'\left( x \right) \\ f\left( x \right) = \frac{d}{{dx}}\left[ {{e^2}x + C} \right] \\ \textcolor{#4257b2}{ {\text{Apply }}\frac{d}{{dx}}\left[ x \right] = 1,{\text{ so}}} \\ f\left( x \right) = {e^2}\left( 1 \right) + 0 \\ f\left( x \right) = {e^2} \\ \end{gathered}$

## Create an account to view solutions

## Create an account to view solutions

## Recommended textbook solutions

#### Miller and Levine Biology

1st Edition•ISBN: 9780328925124 (1 more)Joseph S. Levine, Kenneth R. Miller#### Biocalculus: Calculus, Probability, and Statistics for the Life Sciences

1st Edition•ISBN: 9781305114036Day, Stewart## More related questions

1/4

1/7