Try the fastest way to create flashcards
Question

Find the quotient z1z2\frac{z_1}{z_2} and express it in rectangular form.

z1=12(cos350°+isin350°) and z2=3(cos80°+isin80°)z_1 = \sqrt{12}(\cos 350\degree + i \sin 350\degree) \text{ and } z_2 = \sqrt{3} (\cos 80\degree + i \sin 80\degree)

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 3

To find the quotient z1z2\dfrac{z_1}{z_2} of given complex numbers use formula z1z2=r1r2[cos(θ1θ2)+isin(θ1θ2)]\dfrac{z_1}{z_2}=\dfrac{r_1}{r_2}\left[\cos\left(\theta_1-\theta_2\right)+i\sin\left(\theta_1-\theta_2\right)\right].

z1z2=12(cos350°+isin350°)3(cos80°+isin80°)z1z2=123[cos(350°80°)+isin(350°80°)]z1z2=4(cos270°+isin270°)\begin{align*} \dfrac{z_1}{z_2}&=\dfrac{\sqrt{12}\left(\cos{350°}+i\sin{350°}\right)}{\sqrt{3}\left(\cos{80°}+i\sin{80°}\right)}\\ \dfrac{z_1}{z_2}&=\dfrac{\sqrt{12}}{\sqrt{3}}\left[\cos\left(350°-80°\right)+i\sin\left(350°-80°\right)\right]\\ \dfrac{z_1}{z_2}&=\sqrt{4}\left(\cos{270°}+i\sin{270°}\right) \end{align*}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Precalculus 6th Edition by Robert F. Blitzer

Precalculus

6th EditionISBN: 9780134469140 (1 more)Robert F. Blitzer
12,398 solutions
Precalculus 5th Edition by Robert F. Blitzer

Precalculus

5th EditionISBN: 9780321837349 (1 more)Robert F. Blitzer
12,044 solutions
Precalculus 7th Edition by Larson, Robert P. Hostetler

Precalculus

7th EditionISBN: 9780618643448 (13 more)Larson, Robert P. Hostetler
11,500 solutions
Precalculus 3rd Edition by Cynthia Y. Young

Precalculus

3rd EditionISBN: 9781119275121Cynthia Y. Young
5,000 solutions

More related questions

1/4

1/7