## Related questions with answers

Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the x-axis. y=cos 2x, y=0, x=0, x=π/4

Solution

VerifiedTo find the $\textbf{Volume}$ of the solid given we will apply $\textbf{The Disk Method}$ ...

$\boxed{\color{#c34632}{V=\pi\int_{a}^{b}{R(x)^2dx}}}$

From the exercise given we can see that we need to find

$\begin{equation} V=\pi\int_{0}^{\pi/4}{(\cos{(2x)})^2dx} \end{equation}$

$\textbf{This leads}$ to:

$\begin{align*} V&=\pi\int_{0}^{\pi/4}{\frac{\cos{(4x)}-1}{2}dx}\\ &=\frac{\pi}{2}\int_{0}^{\pi/4}{(\cos{(4x)}-1)dx}\\ &=\frac{\pi}{2}\left[\frac{\sin{(4x)}}{4}+x\right]_{0}^{\pi/4}\\ &=\frac{\pi^2}{8}\\ \end{align*}$

So, our $\textbf{final answer}$ is:

$\boxed{\color{#c34632}{\frac{\pi^2}{8}}}$

## Create a free account to view solutions

## Create a free account to view solutions

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (6 more)James Stewart#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson## More related questions

1/4

1/7