## Related questions with answers

First use (20) to express the general solution of the given differential equation in terms of Bessel functions. Then use (26) and (27) to express the general solution in terms of elementary functions. $x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(x^{2}+2\right) y=0$

Solution

VerifiedIn Section $5.3.$ the following equations are given, which we will use in the Exercise:

$\begin{align*} &y''+\dfrac{1-2a}{x}y'+\left(b^2c^2 x^{2c-2}+\dfrac{a^2-p^2c^2}{x^2}\right)y=0\, , \hspace*{8mm} p\geq 0 \tag{20} \\ &y=x^a\left[c_1J_p(bx^c) +c_2Y_p(bx^c)\right] \tag{21}\\ \end{align*}$

We will also use the following equations

$\begin{align*} J_{\frac{1}{2}}(x)&=\sqrt{\dfrac{2}{\pi x}} \sin x \tag{26} \\ J_{-\frac{1}{2}}(x)&=\sqrt{\dfrac{2}{\pi x}} \cos x \tag{27} \\ \end{align*}$

From the Exercise we have a given differential equation

$\begin{align*} x^2y''+4xy'+\left(x^2+2\right)y&=0\\ y''+\frac{4x}{x^2}\cdot y'+\dfrac{x^2+2}{x^2}\cdot y&=0\\ y''+\frac{4}{x}\cdot y'+\left(1+\frac{2}{x^2}\right)y&=0\\ \end{align*}$

We compare the given differential equation with equation $(20)$, and we can conclude that:

$\begin{align*} 1-2a&=4\\ b^2c^2&=1\\ 2c-2&=0\\ a^2-p^2c^2&=2\\ \end{align*}$

## Create an account to view solutions

## Create an account to view solutions

## Recommended textbook solutions

#### Advanced Engineering Mathematics

10th Edition•ISBN: 9780470458365 (4 more)Erwin Kreyszig#### Advanced Engineering Mathematics

9th Edition•ISBN: 9780471488859 (1 more)Erwin Kreyszig#### Advanced Engineering Mathematics

7th Edition•ISBN: 9781111427412 (2 more)Peter V. O'Neil#### Advanced Engineering Mathematics

6th Edition•ISBN: 9781284105902 (5 more)Dennis G. Zill## More related questions

1/4

1/7