Question

For α,β>0\alpha, \beta>0, show that

B(α,β)=20t2α1(1+t2)(α+β)dt.B(\alpha, \beta)=2 \int_0^{\infty} t^{2 \alpha-1}\left(1+t^2\right)^{-(\alpha+\beta)} d t .

B(α,β)=01xα1(1x)β1dx.B(\alpha, \beta)=\int_0^1 x^{\alpha-1}(1-x)^{\beta-1} d x .

Solution

Verified
Step 1
1 of 2

Let α,β>0\alpha, \beta >0. We know that B(α,β)=01xα1(1x)β1dxB(\alpha, \beta)=\int\limits_0^1 x^{\alpha-1}(1-x)^{\beta-1} dx. If we use substitution

x=t21+t2dx=2t(1+t2)2dt;x=\dfrac{t^2}{1+t^2} \Rightarrow dx=\dfrac{2t}{(1+t^2)^2}dt\,;

x=0t=0;x=1t=(limtt21+t2=1),x=0 \Rightarrow t=0; \quad x=1 \Rightarrow t= \infty\left(\lim\limits_{t \to \infty }\dfrac{t^2}{1+t^2}=1 \right)\,,

we get:

B(α,β)=01xα1(1x)β1dx=B(\alpha, \beta)=\int\limits_0^1 x^{\alpha-1}(1-x)^{\beta-1} dx=

0(t21+t2)α1(1t21+t2)β12t(1+t2)2dt=\int\limits_0^{\infty} \left( \dfrac{t^2}{1+t^2}\right)^{\alpha-1} \left( 1-\dfrac{t^2}{1+t^2}\right)^{\beta-1} \dfrac{2t}{(1+t^2)^2}dt=

20(t2α2(1+t2)α1)(1(1+t2)β1)t(1+t2)2dt=2 \int\limits_0^{\infty} \left(\dfrac{t^{2\alpha-2}}{(1+t^2)^{\alpha-1}}\right)\left( \dfrac{1}{(1+t^2)^{\beta-1}}\right)\dfrac{t}{(1+t^2)^2} dt=

20t(2α2)+1(1+t2)(α1)+(β1)+2dt=2 \int\limits_0^{\infty} \dfrac{t^{(2\alpha-2)+1}}{(1+t^2)^{(\alpha-1)+(\beta-1)+2}}dt=

20t2α1(1+t2)α+βdt=20t2α1(1+t2)(α+β)dt.2 \int\limits_0^{\infty} \dfrac{t^{2\alpha-1}}{(1+t^2)^{\alpha+\beta}}dt=2 \int\limits_0^{\infty} t^{2\alpha-1}(1+t^2)^{-(\alpha+\beta)}dt \,. \quad \checkmark

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

More related questions

1/4

1/7