## Related questions with answers

Question

For any cumulative distribution function F(x), show that if $a \leq b,$ then $F(a) \leq F(b)$

Solution

VerifiedStep 1

1 of 2For a continuous random variable X with probability density function $f$ on $[A, B]$, the ${\bf cumulative distribution function}$ is

$F(x)=P(X\leq x)=\int_{A}^{x}f(t)dt$

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir10,142 solutions

#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (1 more)James Stewart11,084 solutions

#### Applied Calculus

7th Edition•ISBN: 9781305085312 (1 more)Andrew M. Rockett, Geoffrey C. Berresford4,702 solutions

#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson11,048 solutions

## More related questions

- anatomy and physiology

1/4

- anatomy and physiology

1/7