Try the fastest way to create flashcards
Question

For any cumulative distribution function F(x), show that if ab,a \leq b, then F(a)F(b)F(a) \leq F(b)

Solution

Verified
Step 1
1 of 2

For a continuous random variable X with probability density function ff on [A,B][A, B], the cumulativedistributionfunction{\bf cumulative distribution function} is

F(x)=P(Xx)=Axf(t)dtF(x)=P(X\leq x)=\int_{A}^{x}f(t)dt

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (1 more)James Stewart
11,084 solutions
Applied Calculus 7th Edition by Andrew M. Rockett, Geoffrey C. Berresford

Applied Calculus

7th EditionISBN: 9781305085312 (1 more)Andrew M. Rockett, Geoffrey C. Berresford
4,702 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,048 solutions

More related questions

1/4

1/7