Question

Simplify the given expression. Write answers with positive exponents.

m2n3a2c3a7n2m2c4\frac{m^2 n^3}{a^2 c^{-3}} \cdot \frac{a^{-7} n^{-2}}{m^2 c^4}

Solutions

Verified
Answered 8 months ago
Step 1
1 of 2

m2n3a2c3a7n2m2c4=m2m2a7a21c3c4n3n2=m2m2a7a21c3+4n3+(2)=m2m2a7a21c3+4n32=m2m2a7a21c1n1=m2m2a7a2nc=m22a72nc=m0a9nc=1a9nc=1a9nc=na9c\begin{align*} \frac{m^2n^3}{a^2c^{-3}}\cdot \frac{a^{-7}n^{-2}}{m^2c^4} &= \frac{m^2}{m^2}\cdot \frac{a^{-7}}{a^2} \cdot \frac{1}{c^{-3}c^4} \cdot n^3n^{-2} \tag{Associative property}\\ &= \frac{m^2}{m^2}\cdot \frac{a^{-7}}{a^2} \cdot \frac{1}{c^{-3+4}} \cdot n^{3+(-2)} \tag{Product rule}\\ &= \frac{m^2}{m^2}\cdot \frac{a^{-7}}{a^2} \cdot \frac{1}{c^{-3+4}} \cdot n^{3-2} \tag{Change signs}\\ &= \frac{m^2}{m^2}\cdot \frac{a^{-7}}{a^2} \cdot \frac{1}{c^1} \cdot n^1 \tag{Simplify}\\ &= \frac{m^2}{m^2}\cdot \frac{a^{-7}}{a^2} \cdot \frac{n}{c} \tag{Simplify}\\ &= m^{2-2} \cdot a^{-7-2} \cdot \frac{n}{c} \tag{Quotient rule}\\ &= m^0 \cdot a^{-9} \cdot \frac{n}{c} \tag{Simplify}\\ &= 1 \cdot a^{-9} \cdot \frac{n}{c} \tag{Zero exponent rule}\\ &= \frac{1}{a^9} \cdot \frac{n}{c} \tag{Negative exponent rule}\\ &= \boxed{\frac{n}{a^9c}} \tag{Simplify} \end{align*}

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

More related questions

1/4

1/7