## Related questions with answers

Question

In given problem, find all first partial derivatives of each function.

$f(x, y)=\left(4 x-y^2\right)^{3 / 2}$

Solution

VerifiedAnswered 2 years ago

Answered 2 years ago

Step 1

1 of 3Given

$f\left( x,y\right)=\left(4x-y^{2} \right)^{\frac{3}{2}}$

We treat $y$ as a constant and differentiable with respect to $x$,obtaining;

$\begin{align*} f_{x}\left(x,y \right)&=\dfrac{\partial f\left(x,y \right)}{\partial x}\\ &=\dfrac{\partial }{\partial x}\left( 4x-y^{2}\right)^{\frac{3}{2}}\\ &=\dfrac{3}{2}\cdot4\left( 4x-y^{2}\right)^{\frac{3}{2}-1}\\ &=6\left(4x-y^{2} \right)^{\frac{1}{2}}\\ &=6\sqrt{4x-y^{2}}\end{align*}$

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Calculus

9th Edition•ISBN: 9780131429246Dale Varberg, Edwin J. Purcell, Steve E. Rigdon6,552 solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir10,142 solutions

#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (4 more)James Stewart11,085 solutions

#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson11,049 solutions

## More related questions

1/4

1/7